
0.55%

IJCAI 2021 Tutorial:
Towards Robust Deep Learning Models:

Verification, Falsification, and Rectification

Wenjie Ruan1, Xinping Yi2, Elena Botoeva3, Xiaowei Huang2

1University of Exeter, UK; 2University of Liverpool, UK; 3Imperial College, UK

1.1%

Outline 2

Introduction

Falsification through Adversarial Attack

Rectification through Adversarial Training

Robustness Verification

Verification in Practice

Conclusions and Future Directions

1.66%

Table of Contents 3

Introduction

Falsification through Adversarial Attack
Algorithms for Adversarial Attacks
More Examples of Adversarial Attacks

Rectification through Adversarial Training
Adversarial Training
Distributional Robustness
Robustness vs Generalisation

Robustness Verification
Over-approximation Techniques
Constraint Solving Techniques
Abstraction and Refinement Techniques

Verification in Practice

Conclusions and Future Directions

Introduction

2.21 %

2.76%

Deep Learning in Safety-Critical Systems 5

Deep learning models are pervasively applied in many safety-critical systems!

3.31%

Deep Learning in Safety-Critical Systems 6

I Drug Discovery and Development

I Automatic Medical Diagnosis

3.87%

Deep Learning in Safety-Critical Systems 7

I Self-driving Cars

I Autonomous Vehicles

4.42%

Can We Trust its Decisions? 8

Researchers and Practitioners may have many concerns...

I How does a deep learning model make a decision?

I Does deep learning always make a correct decision?

I Under what circumstances a deep learning model will make a wrong decision?

I

Ultimate Question: Can we really trust the decisions made by deep learning
models, especially on safety-critical applications?

4.97%

Vulnerability to Adversarial Examples 9

Yet we cannot trust deep learning models, at least not now ...

Simple approach to fool deep neural networks: Fast Gradient Sign Method
(FGSM) [Goodfellow et al., 2014]

Goodfellow et al (ICLR 2014). Explaining and harnessing adversarial examples.

5.52%

Vulnerability to Adversarial Examples 10

Such vulnerabilities are pervasive ...

6.08%

Vulnerability to Adversarial Examples 11

In Deep Medical Systems...

Adversarial Examples Against Medical Deep Learning Systems [Finlayson et al.,
2019, Finlayson et al., 2018]

Finlayson, Samuel G., et al. ”Adversarial attacks on medical machine learning.” Science

363.6433 (2019): 1287-1289.

6.63%

Vulnerability to Adversarial Examples 12

In Autonomous Systems...

Min et al. (Theoretical Computer Science, 2019), A Game-Based Approximate Verification of

Deep Neural Networks with Provable Guarantees”

7.18%

Vulnerability to Adversarial Examples 13

In Medical Record Analysis...

Javid et al. (ACL 2018), Hotflip: White-box adversarial examples for text classification

7.73%

Adversarial Examples in Running Systems 14

Fool YOLOv2 Object Detector by a real picture ...
https://www.youtube.com/watch?v=MIbFvK2S9g8

Simen et al. (CVPR Workshops 2019), Fooling automated surveillance cameras: adversarial

patches to attack person detection

https://www.youtube.com/watch?v=MIbFvK2S9g8

8.29%

Adversarial Examples in Running Systems 15

Fool an Object Classifier by a 3-D printed turtle ...
https://www.youtube.com/watch?v=XaQu7kkQBPc

Anish et al. (ICML 2018), Synthesizing Robust Adversarial Examples

https://www.youtube.com/watch?v=XaQu7kkQBPc

8.84%

Research Dealing with Adversarial Robustness 16

I Falsification (adversarial attacks, testing, etc.): How to find the weak spots of
deep learning models
→ Evaluating adversarial robustness

I Rectification (adversarial defense): How to defend adversarial attacks
→ Improving the robustness w.r.t. adversarial attacks

I Verification: How to verify if a given model satisfies robustness properties for
certain input constraints
→ Providing robustness guarantees if no counter-examples can be found

9.39%

What is adversarial examples 17

DL model: classifies α and α′ differently
Human: should remain the same

9.94%

An example of Defense 18

Injecting adversarial examples into training so the resulting DL model is resistant to
adversarial attacks

10.5%

An example of Verification 19

Example of (Robustness) Verification: verify if a certain input area can exclude
adversarial examples with guarantees

11.05%

The Aim of the Tutorial 20

This tutorial aims to
cover a few
well-established works
from three aspects:

I Falsification via
adversarial attacks

I Rectification via
adversarial training

I Verification Figure: https://nicholas.carlini.com/writing/2019/

all-adversarial-example-papers.html

Comprehensive one: A Survey of Safety and Trustworthiness of Deep Neural Networks:

Verification, Testing, Adversarial Attack and Defence, and Interpretability, Computer Science

Review. 37 (2020): 100270.

https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html
https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html

11.6%

Table of Contents 21

Introduction

Falsification through Adversarial Attack
Algorithms for Adversarial Attacks
More Examples of Adversarial Attacks

Rectification through Adversarial Training
Adversarial Training
Distributional Robustness
Robustness vs Generalisation

Robustness Verification
Over-approximation Techniques
Constraint Solving Techniques
Abstraction and Refinement Techniques

Verification in Practice

Conclusions and Future Directions

Falsification through Adversarial Attack

12.15 %

12.71%

What is Adversarial Example 23

I Input: DL model f
A correctly-classified, genuine example α

I Aim: find a perturbed example α′, such that
I f produces a different decision on α′

I Human will produce a same decision on α and
α′

13.26%

What is Adversarial Example 24

Problem: Given a DL model f and genuine example α,
find α′ such that

I f(α′) 6= f(α)

I DHuman(α′) = DHuman(α)

How to approximate human decision?

I Use certain distance metric to assure α′ and α are small enough

How to search α′ such that f(α′) 6= f(α)?

I Design certain objective functions for minimization

What kind of information is required from DL model f?

I White-box v.s. Black-box

13.81%

Categories of Adversarial Attacks 25

Targeted Attacks v.s. Un-targeted Attacks

I With a targeted perturbation, the attacker is able to control the resulting
misclassification label.

I With an un-targeted perturbation, the attacker can enable the misclassification
but cannot control its resulting misclassification label.

14.36%

Categories of Adversarial Attacks 26

Distance metric to measure α′ and α:

I Lp-norm distance
- Lp-norm based attacks (e.g., p = 0, 2,∞)

I Total variation of pixel displacement
- Spatial-transformed adversarial attacks

I Metrics for measuring similarity of sentences or text
- Attacks on NLP models

14.92%

Categories of Adversarial Attacks 27

The information is required from DL model f (white-box or black-box):

I Hard labels only

I Confidence values

I Model’s parameters and structure

15.47%

Categories of Adversarial Attacks 28

The type of the model f :

I Feed-forward neural networks

I Recurrent neural networks

I Graph neural networks

I Other models

16.02%

Categories of Adversarial Attacks 29

Local adversarial attack v.s. Universal adversarial attack

I Local adversarial attack:
- find specific perturbation for each input

I Universal adversarial attack:
- find a perturbation that can fool a set of inputs

16.57%

Table of Contents 30

Introduction

Falsification through Adversarial Attack
Algorithms for Adversarial Attacks
More Examples of Adversarial Attacks

Rectification through Adversarial Training
Adversarial Training
Distributional Robustness
Robustness vs Generalisation

Robustness Verification
Over-approximation Techniques
Constraint Solving Techniques
Abstraction and Refinement Techniques

Verification in Practice

Conclusions and Future Directions

Falsification through Adversarial Attack

Algorithms for Adversarial Attacks

17.13 %

17.68%

Limited-Memory BFGS Attack (L-BFGS) 32

One of earliest adversarial attack: optimization based formulation with L2-norm metric

I Model f : Rs1 → {1 . . . sK} with sK labels

I x ∈ Rs1 = [0, 1]s1 is an input

I t ∈ {1 . . . sK} is a target misclassification label

Find the adversarial perturbation r via

min ||r||2 assure human-decision unchanged
s.t. arg maxl fl(x+ r) = t assure misclassification

x+ r ∈ Rs1 assure perturbed image feasible
(1)

- Solved by L-BFGS, Establish this direction

Christian et al (ICLR 2014). Intriguing properties of neural networks

18.23%

FGSM Attack 33

Fast Gradient Sign Method is able to find adversarial perturbations with a fixed
L∞-norm constraint very efficiently

I θ: the model parameters,

I x, y: the input and the label

I J(θ, x, y): the loss function

Find adversarial perturbation r by linearizing the loss function around the current value
of θ,

r = ε sign (∇xJ(θ, x, y)) (2)

- A one-step modification to all pixel values to increase the loss function with a
L∞-norm constraint ε

Goodfellow et al (ICLR 2015). Explaining and harnessing adversarial examples

18.78%

C&W Attack 34

Carlini & Wagner Attack: find adversarial examples with very small distortion, work
on L0, L2 and L∞-norm

I x is an input,

I r is adversarial perturbation

I F is a designed surrogate function such as x+ r is able to fool the neural network
when it is negative

min `(r) = ||r||p + c · F (x+ r) (3)

- The optimizer Adam was directly adopt to solve this optimization problem
- The key to achieve strong attack is a careful design of surrogate function

Nicholas et al (IEEE S&P 2017). Towards evaluating the robustness of neural networks

19.34%

ZOO Attack 35

White-box setting: full access to the target model
Black-box setting: with limited knowledge on the model

ZOO Attack: Model F (x) ∈ [0, 1]K (confidence values)

I minx ||x− x0||22 + c · f(x, t)
where x ∈ [0, 1]p and
f(x, t) = max{−κ,maxi 6=t[logF (x)]i − [logF (x)]t}

I Random coordinate gradient descent via estimated gradients by Symmetric
Difference Quotient:
∂g(x)

∂x
≈ g(x+ he)− g(x− he)

2h
with small h

- Nearly similar performance to white-box attack
- Key difference: only access confidence values → numerically estimate the gradient

Chen et al (ACM Workshop on AI&Security 2017). Zoo: Zeroth order optimization based

black-box attacks to deep neural networks without training substitute models

19.89%

Spatially Transformed Adversarial Examples 36

What else can we modify? Perturb the locations of pixels

f∗ = argminf Ladv(x, f) + τLflow(f) minimize flow
Ladv(x, f) = max(maxi6=t g(xadv)i − g(xadv)t, κ) surrogate function

Measure the pixel displacement: Lflow(f) =
pixels∑
n=1

∑
q∈N (p)

√
||∆u(p) −∆u(q)||22 + ||∆v(p) −∆v(q)||22

Perform spatial transformation: x
(i)
adv =

∑
q∈N (u(i),v(i))

x(q)(1− |u(i) − u(q)|)(1− |v(i) − v(q)|)

20.44%

Spatially Transformed Adversarial Examples 37

Flow visualization on MNIST: digit ”0” is misclassified as ”2”

I Instead of perturbing the pixel values, adversarial attacks can be achieved by
spatial transformation

I Different metric is required to measure pixel’s spatial displacement

Chaowei et al (ICLR 2018). Spatially transformed adversarial examples

20.99%

Universal Attack via Combined Perturbation 38

How about perturbing spatial location and pixel values simultaneously on an image set?

- Unified solution: Lp-norm, spatial-transformed, or both
- Universal: a single perturbation fools a set of input images
- Strong transferability: workable across unseen models in a black-box setting

21.55%

Universal Attack via Combined Perturbation 39

Yanghao et al (ICDM 2020). Generalizing Universal Adversarial Attacks Beyond Additive

Perturbations

22.1%

Table of Contents 40

Introduction

Falsification through Adversarial Attack
Algorithms for Adversarial Attacks
More Examples of Adversarial Attacks

Rectification through Adversarial Training
Adversarial Training
Distributional Robustness
Robustness vs Generalisation

Robustness Verification
Over-approximation Techniques
Constraint Solving Techniques
Abstraction and Refinement Techniques

Verification in Practice

Conclusions and Future Directions

Falsification through Adversarial Attack

More Examples of Adversarial Attacks

22.65 %

23.2%

More Attacks: on NLP models 42

Adversarial attack on reading comprehension system

- Adding distracting sentences (in blue)
- Prediction changes from correct one (green) to incorrect (red)

Robin et al (EMNLP 2017). Adversarial Examples for Evaluating Reading Comprehension

Systems

23.76%

More Attacks: on NLP models 43

Edit adversarial attack on sentiment analysis system:

- After editing words (red), prediction changes from 100% of Negative to 89% of
Positive.

Li et al (DNSS 2020). TextBugger: Generating Adversarial Text Against Real-world

Applications

24.31%

More Attacks: NLP models 44

Adversarial attack on BERT-based sentiment classifier:

- Changing a few words completely fools the BERT model

Ji et al (AAAI 2020). Is BERT really robust? a strong baseline for natural language attack on

text classification and entailment

24.86%

More Attacks: 3D Point Cloud Models 45

Adversarial attacks on multiple 3D Point Cloud models by slightly perturbing the
locations of the points

Hamdi et al (ECCV 2020). AdvPC: Transferable Adversarial Perturbations on 3D Point Clouds

25.41%

More Attacks: Audio Recognition Systems 46

Imperceptible adversarial examples can be generated to fool Audio Recognition
Systems including Google Speech, Bing Speech, IBM Speech APIs, etc

Hadi et al (DNSS 2020). Practical Hidden Voice Attacks against Speech and Speaker

Recognition Systems

25.97%

Existing Tools for Adversarial Attacks 47

I Adversarial Robustness Toolbox (ART):
https://github.com/Trusted-AI/adversarial-robustness-toolbox

I Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine
learning models in PyTorch, TensorFlow, and JAX
https://github.com/bethgelab/foolbox

I CleverHans: https://github.com/tensorflow/cleverhans

I Advbox Family: https://github.com/advboxes/AdvBox

I ...

https://github.com/Trusted-AI/adversarial-robustness-toolbox
https://github.com/bethgelab/foolbox
https://github.com/tensorflow/cleverhans
https://github.com/advboxes/AdvBox

26.52%

Existing Surveys for Adversarial Attacks 48

I Huang, Xiaowei, et al. ”A survey of safety and trustworthiness of deep neural
networks: Verification, testing, adversarial attack and defence, and
interpretability.” Computer Science Review 37 (2020): 100270.

I Hao-Chen, Han Xu Yao Ma, et al. ”Adversarial attacks and defenses in images,
graphs and text: A review.” International Journal of Automation and Computing
17.2 (2020): 151-178.

I Akhtar, Naveed, and Ajmal Mian. ”Threat of adversarial attacks on deep learning
in computer vision: A survey.” IEEE Access 6 (2018): 14410-14430.

I ...

27.07%

What’s the next? 49

I Adversarial attacks are important
I Understanding the limitation, or potential safety risks of deep learning models
I Providing a way to practically evaluate robustness performance of deep learning

models under adversarial environments
I Issues:

- It cannot provide robustness guarantees in terms of excluding adversarial examples
- Attacks alone cannot directly improve the robustness

I How can we improve its robustness? → Part-2: Rectification

I How to assess the adversarial robustness with provable guarantees → Part-3:
Verification

27.62%

Table of Contents 50

Introduction

Falsification through Adversarial Attack
Algorithms for Adversarial Attacks
More Examples of Adversarial Attacks

Rectification through Adversarial Training
Adversarial Training
Distributional Robustness
Robustness vs Generalisation

Robustness Verification
Over-approximation Techniques
Constraint Solving Techniques
Abstraction and Refinement Techniques

Verification in Practice

Conclusions and Future Directions

Rectification through Adversarial Training

28.18 %

28.73%

Rectification via Adversarial Defence 52

A fast growing research area:

I Input denoising
� e.g., Guo et al (2017); Buckman et al (2018); Liao et al (2018); Samangouei et
al (2018); Bai et al (2019); etc.

I Randomised smoothing
� e.g., Lecuyer et al (2019); Li et al (2019); Cohen et al (2019); Salman et al
(2019); Levine & Feizi (2020); Lee et al (2019); Teng et al (2020); Zhang et al
(2020); etc.

I Adversarial training
I Training dataset augmentation
� e.g., Goodfellow et al (2014); Shaham et al (2018); Sabour et al (2015); Kurakin
et al (2016); Papernot et al (2016); Dezfooli et al (2016); etc.

I Robust optimisation
� e.g., Goodfellow et al (2015); Madry et al (2017); Zhang et al (2019); Miyato et al
(2018); Wang et al (2019); etc.

29.28%

Attack vs. Defence: An Endless Game 53

@ DARPA’s GARD programme

29.83%

Adversarial Training Survives 54

I Athalye et al (ICML 2018). Obfuscated Gradients Give a False Sense of Security.

I Successful attack of 7 out of 9 defense in ICLR 2018

I The only survival is adversarial training

30.39%

Table of Contents 55

Introduction

Falsification through Adversarial Attack
Algorithms for Adversarial Attacks
More Examples of Adversarial Attacks

Rectification through Adversarial Training
Adversarial Training
Distributional Robustness
Robustness vs Generalisation

Robustness Verification
Over-approximation Techniques
Constraint Solving Techniques
Abstraction and Refinement Techniques

Verification in Practice

Conclusions and Future Directions

Rectification through Adversarial Training

Adversarial Training

30.94 %

31.49%

Adversarial Training via Robust Optimisation 57

I Madry et al (ICLR 2018). Towards Deep Learning Models Resistant to Adversarial
Attacks.

I Idea: solving a minimax optimisation problem through SGD training

min
θ
{E(x,y)∼D[max

x′∈Sx
L(x′, y; θ)]},

I (x, y) - clean training data samples x ∈ Rn with labels y ∈ [k] drawn from the
dataset D

I L(·) - loss function with model parameter θ ∈ Rm
I x′ ∈ Rn - perturbed samples in a feasible region

Sx , {z : z ∈ B(x, ε) ∩ [−1.0, 1.0]n}
I e.g., B(z, ε) , {z : ‖x− z‖p ≤ ε} - the `p-ball at center x with radius ε.

32.04%

Adversarial Attacks as Inner Maximisation 58

I Outer minimisation can be simulated by SGD training

min
θ
{ 1

N

N∑
i=1

[max
x′∈Sx

L(x′, y; θ)]},

I How to compute gradient of a maximisation?
I Danskin’s Theorem

∇θ maxL(x′, y; θ) = ∇θL(x∗, y; θ)

where x∗ = arg maxL(x′, y; θ)

I Inner maximisation maxx′∈Sx L(x′, y; θ) can be simulated by finding the
worst-case adversarial attacks:
I Fast Gradient Method (FGM)
I Projected Gradient Method (PGM):

32.6%

Fast Gradient Method (FGM) 59

I Goodfellow et al (2014). Explaining and harnessing adversarial examples.
arXiv:1412.6572.

I Idea: Projecting perturbation onto the direction of gradient ascent of loss function

I Adversarial examples:

x∗ = arg max
x′∈Sx

〈x′ − x,∇θL(x, y; θ)〉

I For `∞-norm, FGM recovers the fast gradient sign method (FGSM) where each
data point (x, y) is perturbed by the ε-normalised sign vector of the loss’s gradient

x∗ = x+ ε · sgn(∇θL(x, y; θ))

33.15%

Projected Gradient Method (PGM) 60

I Kurakin et al (2016). Adversarial machine learning at scale. arXiv:1611.01236.

I Idea: Iterative gradient ascent to generate strongest adversarial examples, followed
by projection back to the feasible region

I Updating rule:

xt+1 = ΠSx(xt + α · sgn(∇xL(xt, y; θ))),

where ΠSx(·) projects the inputs onto the region Sx.

33.7%

AT Variants 61

I FreeAT:
I Shafahi et al (NeurIPS 2019). Adversarial training for free!
I https://github.com/ashafahi/free_adv_train/

I YOPO:
I Zhang et al (NeurIPS 2019). You only propagate once: Accelerating adversarial

training via maximal principle.
I https://github.com/a1600012888/YOPO-You-Only-Propagate-Once

I FreeLB:
I Zhu et al (ICLR 2020). FreeLB: enhanced adversarial training for language

understanding.
I https://github.com/zhuchen03/FreeLB

I FastAT
I Wong et al (ICLR 2020). Fast is better than free: Revisiting adversarial training.
I https://github.com/locuslab/fast_adversarial

https://github.com/ashafahi/free_adv_train/
https://github.com/a1600012888/YOPO-You-Only-Propagate-Once
https://github.com/zhuchen03/FreeLB
https://github.com/locuslab/fast_adversarial

34.25%

Pros and Cons of Adversarial Training 62

I Pros:
I Empirical robustness (although no robust certificate)
I Without affecting inference time (although increasing the training time)
I Integratable to different threat models

I Cons:
I Sacrifice accuracy to robustness
I Dedicated to supervised learning
I Rely very much on identifying local adversarial examples for specific threat models
I No guarantees of generalisation performance

34.81%

Rethinking Adversarial Training 63

The min-max optimisation problem

min
θ
{E(x,y)∼D[max

x′∈Sx
L(x′, y; θ)]},

where robustness is the goal.

How shall we deal with the following?

I Robustness vs Accuracy

I Supervised vs Semi-supervised Learning

I Local vs Global Information

I Robustness vs Generalisation

35.36%

Table of Contents 64

Introduction

Falsification through Adversarial Attack
Algorithms for Adversarial Attacks
More Examples of Adversarial Attacks

Rectification through Adversarial Training
Adversarial Training
Distributional Robustness
Robustness vs Generalisation

Robustness Verification
Over-approximation Techniques
Constraint Solving Techniques
Abstraction and Refinement Techniques

Verification in Practice

Conclusions and Future Directions

Rectification through Adversarial Training

Distributional Robustness

35.91 %

36.46%

Distributionally Robust Optimisation 66

I Sinha et al (ICLR 2018). Certifying some distributional robustness with principled
adversarial training.

I Idea: Considering a Lagrangian penalty formulation of perturbing the underlying
data distribution in a Wasserstein ball

min
θ

sup
P∈P

E(x,y)∼P [L(x, y; θ)− γWc(P, P0)]

s.t. Wc(P, P0) , inf
M∈Π(P,P0)

EMc(Z,Z ′)

where P0 is data-generating distribution, P is the perturbed distribution from P0

such that P = {P : Wc(P, P0) ≤ ρ}, Wc(·, ·) is Wasserstein metric, c(Z,Z ′) is
the transport cost from Z to Z ′, and M is certain measure.

37.02%

Robustness vs Accuracy 67

I Zhang et al (ICML 2019). Theoretically principled trade-off between robustness
and accuracy.

I Idea: optimizing a regularised surrogate loss

min
θ
{E(x,y)∼D[L(x, y; θ) + β max

x′∈B(x,ε)
KL(f(x)||f(x′))]},

I empirical loss minimisation: maximise the natural accuracy
I regularization term: push the decision boundary away from the data, so as to

improve adversarial robustness

37.57%

Supervised vs Semi-supervised Learning 68

I Miyato et al (TPAMI 2018). Virtual adversarial training: a regularisation method
for supervised and semi-supervised learning.

I Idea: regularise on local distributional smoothness (LDS)

I Virtual adversarial loss with “virtual” label: The distance of the conditional label
distributions around each input data point against local perturbation

min
θ

E(x,y)∼DlL(x, y; θ) + αEx∗∼Dl∪DulLDS(x∗; θ)

s.t. LDS(x∗; θ) , D(p(·|x∗; θ̂)||p(·|x∗ + rvadv; θ))

rvadv = arg max
‖r‖2≤ε

D(p(·|x∗; θ̂)||p(·|x∗ + r))

I Virtual adversarial direction: A direction of the adversarial perturbation that alter
the output distribution at most.

38.12%

Local vs Global Information 69

I Zhang and Wang (NeurIPS 2019). Defense against adversarial attacks using
feature scattering-based adversarial training.
I Motivation: Vanilla adversarial training generates adversarial examples one by one

separately, without considering inter-sample relationship
I Idea: Generating adversarial examples by perturbing the local neighborhood

structure in an unsupervised fashion using feature scattering, and then performing
model training with the generated adversarial examples

I Feature scattering: Maximizing the feature matching distance between the clean
samples and the perturbed samples in the latent space.

I Drawbacks
I Feature scattering only considers the inter-sample relationship within the batch
I Biased towards the decision boundary, which potentially corrupts the structure of the

original data distribution

Question: How could global data manifold information play a role?

38.67%

Exploiting Local & Global Information 70

I Robust optimization with f -divergence regularization

min
θ

{Efθ(xadv)∼P ∗θ
[l(fθ(x

adv), y)] +Df (P ∗θ ||Qθ)}

s.t. P ∗θ = arg max
Pθ∈P

[Df (Pθ||Qθ)]

where Df (·) is the f -divergence measure of two distributions, Qθ is the underlying
distribution of the latent features of clean samples, and Pθ is the underlying
distribution of the latent features of adversarial perturbations.

I Feasible region for the latent distribution

P = {P : fθ(x
′) ∼ P subject to ∀x ∼ Q0, x

′ ∈ B(x, ε)}

is induced by the set of perturbed examples through fθ(·).

39.23%

Adversarial Training with Latent Distribution (ATLD) 71

I Idea: (1) Leverage a discriminator network for estimating the f -divergence
between two distributions; (2) Generate Latent Manifold Adversarial Examples
(LMAEs) to ‘deceive’ the latent manifold rather than fool the classifier

min
θ

{ N∑
i=1

L(xadvi , yi; θ)︸ ︷︷ ︸
Lf

+ sup
W

N∑
i=1

[logD0
W (fθ(x

adv
i)) + (1− logD0

W (fθ(xi)))︸ ︷︷ ︸
L0
d

]

+ min
W

[l(D1:C
W (fθ(xi)), yi) + l(D1:C

W (fθ(x
adv
i)), yi)]︸ ︷︷ ︸

L1:C
d

}
s.t. xadvi = arg max

x′i∈B(xi,ε)
[logD0

W (fθ(x
′
i)) + (1− logD0

W (fθ(xi))].

where DW denotes the discriminator network with parameter W , D0
W and D1:C

W

are the different dimensions of the output of the discriminator.

39.78%

ATLD as an Adversarial Game 72

Adversarial game between a discriminator and a classifier:

I Discriminator is learned to differentiate globally the latent distributions of the
natural data and the perturbed counterpart

I Classifier is trained to recognize accurately the perturbed examples as well as
enforcing the invariance between the two latent distributions

40.33%

ATLD: Data Manifold and Decision Boundary 73

Qian et al (2021). Improving model robustness with latent distribution locally and globally.

arXiv:2107.04401.

40.88%

Table of Contents 74

Introduction

Falsification through Adversarial Attack
Algorithms for Adversarial Attacks
More Examples of Adversarial Attacks

Rectification through Adversarial Training
Adversarial Training
Distributional Robustness
Robustness vs Generalisation

Robustness Verification
Over-approximation Techniques
Constraint Solving Techniques
Abstraction and Refinement Techniques

Verification in Practice

Conclusions and Future Directions

Rectification through Adversarial Training

Robustness vs Generalisation

41.44 %

41.99%

Generalisable Robustness via Regularisation 76

Standard regularisation techniques work for adversarial training to enhance
generalisation performance

I Dropout

I Weight decay

I Data augmentation

I Early stopping

Q: Are there any weight regularisation techniques for generalisation that could be
particularly suitable for adversarial training?

I Spectral normalisation

I Lipschitz regularisation

I Weight correction regularisation

42.54%

Spectral Normalisation 77

I Miyato et al (ICLR 2018). Spectral normalization for generative adversarial
networks.
I Spectral normalisation: Normalising weight matrix by spectral norm, i.e.,

WSN = W
σ(W) where

σ(W) , max
‖x‖2≤1

‖Wx‖2

I Farnia et al (ICLR 2019). Generalizable adversarial training via spectral
normalization.

43.09%

Lipschitz Regularisation 78

Lipschitz constraints under `2-norm are useful for provable adversarial robustness
bounds, stable training, and Wasserstein distance estimation.
I Cisse et al (ICML 2017). Parseval networks: Improving robustness to adversarial

examples.
I Idea: to maintain weight matrices of linear and convolutional layers to be

(approximately) Parseval tight frames (extensions of orthogonal matrices to
non-square matrices).

I Li et al (NeurIPS 2019). Preventing gradient attenuation in lipschitz constrained
convolutional networks.
I Idea: to introduce convolutional gradient norm preserving networks with an efficient

parameterisation of orthogonal convolutions to avoid the issues of loose bounds on
the Lipschitz constant and computational intractability

43.65%

Weight Correlation Regularisation 79

I Weight Correlation: Given weight matrix Wl ∈ RNl−1×Nl of the l-th layer, the
average weight correlation is defined as

ρ(Wl) =
1

Nl(Nl − 1)

Nl∑
i,j=1
i 6=j

|wT
l,iwl,j |

||wl,i||2||wl,j ||2
,

where wl,i and wl,j are i-th and j-th column of Wl, corresponding to the i-th
and j-th neuron at l-th layer, respectively. Intuitively, ρ(Wl) is the average cosine
similarity between weight vectors of any two neurons at the l-th layer.

I Weight Correlation Regularisation
I Idea: Regularisation to constrain the average weight correlation between any two

neurons so as to enhance generalisation performance

Jin et al (NeurIPS 2020). How does Weight Correlation Affect the Generalisation Ability of

Deep Neural Networks.

44.2%

Robust Optimisation vs Regularisation 80

I Adversarial training vs norm regularisation
I Roth et al (NeurIPS 2020). Adversarial training is a form of data-dependent

operator norm regularization.
I Insight: `p-norm constrained projected gradient ascent based adversarial training

with an `q-norm loss on the logits of clean and perturbed inputs is equivalent to
data-dependent (p, q) operator norm regularization

I Distributionally robust optimisation (DRO) vs regularisation
I Husain (NeurIPS 2020). Distributional robustness with IPMs and links to

regularization and GANs.
I Insight: DRO under any choice of Integral Probability Metrics (IPM) corresponds to

a family of regularization penalties, which recover and improve upon existing results
in the setting of Maximum Mean Discrepancy (MMD) and Wasserstein distances.

44.75%

Robust Generalisation 81

I Generalisation error:

GE , |l(fθ(S), Y)− l̂(fθ(Sd), Yd)|

where l(fθ(S), Y) , E(x,y)∼(S,Y)[l(fθ(x), y)] and

l̂(fθ(Sd), Yd) ,
1
|Sd|

∑
(xd,yd)∈Sd l(fθ(xd), yd) with Sd, Yd being the training data

and the corresponding labels, respectively, and S, Y being the underlying data and
label distributions, respectively.

I Robust generalisation error:

RGE , |l(fθ(Sadv), Y)− l̂(fθ(Sadvd), Yd)|

where Sadvd and Sadv are the set of adversarial examples for the training set and
its underlying distribution.

45.3%

Robust Generalisation is Hard 82

I Schmidt et al (NeurIPS 2018). Adversarially robust generalization requires more
data.
I Sample complexity of robust learning >> sample complexity of “standard” learning

— the gap holds irrespective of training algorithms or models

I Yin et al (ICML 2019). Rademacher complexity for adversarially robust
generalization.
I Adversarial Rademacher complexity is larger than its natural counterpart
I It has an unavoidable dimension dependence, unless the weight vector has bounded

`1 norm

I Raghunathan et al (2019). Adversarial training can hurt generalization.
I Adversarial training hurts generalisation even when the optimal predictor has both

optimal standard and robust accuracy

Question: Why is robust generalisation hard to achieve and how to improve it?

45.86%

Robust Generalisation Gap 83

Given the training set Sd = {xi}ni=1 drawn from a distribution S with K classes, and
the corresponding adversarial example set Sadvd = {xadvi }ni=1 drawn from the underlying
distribution Sadv, if the loss function l(·) of DNN fθ is κ-Lipschitz, then for any δ > 0,
with the probability at least 1− δ

RGE ≤ GE +
κ

n

K∑
i=1

∑
j∈Ni

‖dθ(xadvj)− d̂θ(z, Ci)‖22 +M

√
2K ln 2 + 2 ln 1

δ

n

where dθ(x
adv) = fθ(x

adv)− fθ(x)

d̂θ(z, Ci) = E[fθ(z
adv)− fθ(z)|z ∈ Ci]

with Ni being the set of index of training data for class i, Ci the set of ith class data
of the whole set and z is data sampled from Ci with corresponding adversarial example
zadv, M the upper bound of loss of the whole data manifold S.

46.41%

Shift Consistency Regularisation 84

Adversarial Training with Shift Consistency Regularisation (AT-SCR)

min
θ

{ n∑
i=1

[L(xadvi , yi; θ)] +
λ

n

K∑
i=1

∑
j∈Ni

ŜiC(xadvj , xl, Ni)
}
,

s.t. xadvi = arg max
x′i∈Sxi

L(x′i, yi; θ).

where

ŜiC(xadvj , xl, Ni) , ‖dθ(xadvj)− d̄θ(xl, Ni)‖22,

where d̄θ(xl, Ni) is the average feature shifts over training data of class i, i.e.,

d̄θ(xl, Ni) =
1

|Ni|
∑
l∈Ni

(fθ(x
adv
l)− fθ(xl)).

46.96%

AT-SCR 85

Zhang et al (ICML 2021). Towards Better Robust Generalization with Shift Consistency

Regularization.

47.51%

Concluding Remarks 86

I Distributional robustness is more preferable for adversarial training
I trade-off between robustness and accuracy
I both supervised and semi-supervised learning
I both local and global information

I Robustness vs generalisation
I Regularisation techniques could benefit both robustness and generalisation

simultaneously
I Robust generalisation requires rethinking latent dispersion of clean and adversarial

examples

48.07%

Table of Contents 87

Introduction

Falsification through Adversarial Attack
Algorithms for Adversarial Attacks
More Examples of Adversarial Attacks

Rectification through Adversarial Training
Adversarial Training
Distributional Robustness
Robustness vs Generalisation

Robustness Verification
Over-approximation Techniques
Constraint Solving Techniques
Abstraction and Refinement Techniques

Verification in Practice

Conclusions and Future Directions

48.62%

Verification 88

I formal guarantees

Input 1

Input 2

Input s0

Output 1

Output sk

x0

Input layer

xi

Hidden layers

xk

Output layer

Program

Property

Verification
Procedure

Counter-
example

fails

holds

48.62%

Verification 88

I formal guarantees

Input 1

Input 2

Input s0

Output 1

Output sk

x0

Input layer

xi

Hidden layers

xk

Output layer

Program

Property

Verification
Procedure

Counter-
example

fails

holds

49.17%

Neural Network Notation 89

Input 1

Input 2

Input s0

Output 1

Output sk

x0

Input layer

xi xk

Output layer

zixi−1 = N(x0)

linear transformation

Hidden layers

non-linear activation

I zi are preactivations, zi = W ixi−1 + bi

I xi are postactivations, xi = ReLU(zi) = max(0, zi)

49.17%

Neural Network Notation 89

Input 1

Input 2

Input s0

Output 1

Output sk

x0

Input layer

xi xk

Output layer

zixi−1 = N(x0)

linear transformation

Hidden layers

non-linear activation

I zi are preactivations, zi = W ixi−1 + bi

I xi are postactivations, xi = ReLU(zi) = max(0, zi)

49.17%

Neural Network Notation 89

Input 1

Input 2

Input s0

Output 1

Output sk

x0

Input layer

xi xk

Output layer

zixi−1 = N(x0)

linear transformation

Hidden layers

non-linear activation

I zi are preactivations, zi = W ixi−1 + bi

I xi are postactivations, xi = ReLU(zi) = max(0, zi)

49.72%

Properties to Verify 90

Generic input-output relation

I∀x0 ∈ ON(x0) ∈

I local robustness

I reachability

I safety
I semantic perturbations

I rotation, translation, brightness and contrast, etc.

50.28%

Local Robustness Verification 91

Given a network N , an input x̂ ∈ Rs0 , a perturbation radius r and
a distance metric || · ||p, decide whether

arg max
i
N(x0)i = arg max

i
N(x̂)i

for all x0 such that ||x0 − x̂||p ≤ r.

Here we focus on the infinity norm ||x||∞ := maxi |xi|.
⇒ x0 ∈ [l0,u0], where l0i = x̂i − r and u0

i = x̂i + r.

50.83%

Challenges in Verification of Neural Networks 92

Verification is a difficult problem

I exact reachability is NP-complete for ReLU networks

. . .

Input set Output reachable set

Unsafe states

layer 1 layer 2 layer k

I approximate methods offer better scalability

50.83%

Challenges in Verification of Neural Networks 92

Verification is a difficult problem

I exact reachability is NP-complete for ReLU networks

. . .

Input set Output reachable set

Unsafe states

layer 1 layer 2 layer k

I approximate methods offer better scalability

51.38%

State-of-the-art Verification Approaches 93

I (Sound and) incomplete methods for general activations
I Over-approximation

1. Abstract Interpretation
2. Estimation of output bounds

I Global optimisation

I (Sound and) complete methods for piecewise-linear activations
I Constraint solving approaches

I SMT
I MILP

I Abstraction and iterative refinement

51.93%

Table of Contents 94

Introduction

Falsification through Adversarial Attack
Algorithms for Adversarial Attacks
More Examples of Adversarial Attacks

Rectification through Adversarial Training
Adversarial Training
Distributional Robustness
Robustness vs Generalisation

Robustness Verification
Over-approximation Techniques
Constraint Solving Techniques
Abstraction and Refinement Techniques

Verification in Practice

Conclusions and Future Directions

52.49%

Abstract Interpretation 95

https://github.com/eth-sri/eran

Gehr et al (S&P 2018). AI2: Safety and Robustness Certification of Neural Networks with Abstract Interpretation.
Singh et al (NeurIPS 2018). Fast and Effective Robustness Certification.
Singh et al (POPL 2019). An Abstract Domain for Certifying Neural Networks.
Singh et al (ICLR 2019). Boosting Robustness Certification Of Neural Networks.

53.04%

Bounds Computation 96

As the core of an over-approximation approach or as a pre-processing step.

fast

loose

slow

tight

Interval
Propagation

Symbolic
Interval

Propagation
Linear

Optimisation
Non-linear

Optimisation

Interval propagation
I propagate intervals layer by layer

Actual convex hull

Transformation of
the previous bounds

Interval bounds

Linear optimisation

I linearly relax non-linearities and solve the optimisation problems

minxij
subject to . . .

maxxij
subject to . . .

Symbolic interval propagation

I compute symbolic linear equations from the input variables

leqi(x
0) ≤ xi ≤ ueqi(x

0)

I concrete bounds are obtained by substituting the bounds for x0.

53.04%

Bounds Computation 96

As the core of an over-approximation approach or as a pre-processing step.

fast

loose

slow

tight

Interval
Propagation

Symbolic
Interval

Propagation
Linear

Optimisation
Non-linear

Optimisation

Interval propagation
I propagate intervals layer by layer

Actual convex hull

Transformation of
the previous bounds

Interval bounds

Linear optimisation

I linearly relax non-linearities and solve the optimisation problems

minxij
subject to . . .

maxxij
subject to . . .

Symbolic interval propagation

I compute symbolic linear equations from the input variables

leqi(x
0) ≤ xi ≤ ueqi(x

0)

I concrete bounds are obtained by substituting the bounds for x0.

53.04%

Bounds Computation 96

As the core of an over-approximation approach or as a pre-processing step.

fast

loose

slow

tight

Interval
Propagation

Symbolic
Interval

Propagation
Linear

Optimisation
Non-linear

Optimisation

Interval propagation
I propagate intervals layer by layer

Actual convex hull

Transformation of
the previous bounds

Interval bounds

Linear optimisation

I linearly relax non-linearities and solve the optimisation problems

minxij
subject to . . .

maxxij
subject to . . .

Symbolic interval propagation

I compute symbolic linear equations from the input variables

leqi(x
0) ≤ xi ≤ ueqi(x

0)

I concrete bounds are obtained by substituting the bounds for x0.

53.04%

Bounds Computation 96

As the core of an over-approximation approach or as a pre-processing step.

fast

loose

slow

tight

Interval
Propagation

Symbolic
Interval

Propagation
Linear

Optimisation
Non-linear

Optimisation

Interval propagation
I propagate intervals layer by layer

Actual convex hull

Transformation of
the previous bounds

Interval bounds

Linear optimisation

I linearly relax non-linearities and solve the optimisation problems

minxij
subject to . . .

maxxij
subject to . . .

Symbolic interval propagation

I compute symbolic linear equations from the input variables

leqi(x
0) ≤ xi ≤ ueqi(x

0)

I concrete bounds are obtained by substituting the bounds for x0.

53.59%

Linear Relaxation of Unstable ReLU 97

x

ReLU(x)

l u

x

ReLU(x)

a · x
+ b

0

x

l u x

ReLU(x)

a · x
+ b

0l u x

ReLU(x)

a · x
+ b

x
l u

Upper bound equation Υl,u,x = a · x+ b, where a = u
u−l and b = −lu

u−l

Lower bound equation Λl,u,x =

{
0, if u ≤ −l
x, if u > −l

Ehlers (ATVA 2017). Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks.
Singh et al (POPL 2019). An Abstract Domain for Certifying Neural Networks.

53.59%

Linear Relaxation of Unstable ReLU 97

x

ReLU(x)

l u

x

ReLU(x)

a · x
+ b

0

x

l u

x

ReLU(x)

a · x
+ b

0l u x

ReLU(x)

a · x
+ b

x
l u

Upper bound equation Υl,u,x = a · x+ b, where a = u
u−l and b = −lu

u−l

Lower bound equation Λl,u,x =

{
0, if u ≤ −l
x, if u > −l

Ehlers (ATVA 2017). Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks.

Singh et al (POPL 2019). An Abstract Domain for Certifying Neural Networks.

53.59%

Linear Relaxation of Unstable ReLU 97

x

ReLU(x)

l u

x

ReLU(x)

a · x
+ b

0

x

l u x

ReLU(x)

a · x
+ b

0l u x

ReLU(x)

a · x
+ b

x
l u

Upper bound equation Υl,u,x = a · x+ b, where a = u
u−l and b = −lu

u−l

Lower bound equation Λl,u,x =

{
0, if u ≤ −l
x, if u > −l

Ehlers (ATVA 2017). Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks.
Singh et al (POPL 2019). An Abstract Domain for Certifying Neural Networks.

54.14%

Linear Relaxation of S-shape Activation Functions 98

−2 0 2 4
0

0.5

1
l u

−2 0 2 4
0

0.5

1
l u

−2 0 2 4
0

0.5

1
l u

Zhang et al (Neurips 2018). Efficient Neural Network Robustness Certification with General Activation Functions.
Henriksen and Lomuscio (ECAI 2020). Efficient Neural Network Verification via Adaptive Refinement and
Adversarial Search.
Wu and Zhang (AAAI 2021). Tightening Robustness Verification of Convolutional Neural Networks with
Fine-Grained Linear Approximation.

54.7%

Symbolic Interval Propagation 99

[l1,u1]

z1

[l2,u2]

z2

[l0,u0]

x0 x1 x2

[l3,u3]

x3

W 1x0 + b1 W 2x1 + b2 W 3x2 + b3Υl1,u1,z1

Λl1,u1,z1

Υl2,u2,z2

Λl2,u2,z2

leq1, ueq1
leq2, ueq2 leq3, ueq3

Substituting the equations backwards until the input layer

I current equation Mx+ o, local equations l(y) and u(y) for x

I new lower bound equation M+ · l(y) + M− · u(y) + o

I new upper bound equation M+ · u(y) + M− · l(y) + o

Singh et al (POPL 2019). An Abstract Domain for Certifying Neural Networks.

Wang et al (NeurIPS 2018). Efficient Formal Safety Analysis of Neural Networks.

Weng et al (ICML 2018). Towards Fast Computation of Certified Robustness for ReLU Networks.

54.7%

Symbolic Interval Propagation 99

[l1,u1]

z1

[l2,u2]

z2

[l0,u0]

x0 x1 x2

[l3,u3]

x3

W 1x0 + b1

W 2x1 + b2 W 3x2 + b3Υl1,u1,z1

Λl1,u1,z1

Υl2,u2,z2

Λl2,u2,z2

leq1, ueq1
leq2, ueq2 leq3, ueq3

Substituting the equations backwards until the input layer

I current equation Mx+ o, local equations l(y) and u(y) for x

I new lower bound equation M+ · l(y) + M− · u(y) + o

I new upper bound equation M+ · u(y) + M− · l(y) + o

Singh et al (POPL 2019). An Abstract Domain for Certifying Neural Networks.

Wang et al (NeurIPS 2018). Efficient Formal Safety Analysis of Neural Networks.

Weng et al (ICML 2018). Towards Fast Computation of Certified Robustness for ReLU Networks.

54.7%

Symbolic Interval Propagation 99

[l1,u1]

z1

[l2,u2]

z2

[l0,u0]

x0 x1 x2

[l3,u3]

x3

W 1x0 + b1

W 2x1 + b2 W 3x2 + b3Υl1,u1,z1

Λl1,u1,z1

Υl2,u2,z2

Λl2,u2,z2

leq1, ueq1

leq2, ueq2 leq3, ueq3

Substituting the equations backwards until the input layer

I current equation Mx+ o, local equations l(y) and u(y) for x

I new lower bound equation M+ · l(y) + M− · u(y) + o

I new upper bound equation M+ · u(y) + M− · l(y) + o

Singh et al (POPL 2019). An Abstract Domain for Certifying Neural Networks.

Wang et al (NeurIPS 2018). Efficient Formal Safety Analysis of Neural Networks.

Weng et al (ICML 2018). Towards Fast Computation of Certified Robustness for ReLU Networks.

54.7%

Symbolic Interval Propagation 99

[l1,u1]

z1

[l2,u2]

z2

[l0,u0]

x0 x1 x2

[l3,u3]

x3

W 1x0 + b1

W 2x1 + b2 W 3x2 + b3

Υl1,u1,z1

Λl1,u1,z1

Υl2,u2,z2

Λl2,u2,z2

leq1, ueq1
leq2, ueq2 leq3, ueq3

Substituting the equations backwards until the input layer

I current equation Mx+ o, local equations l(y) and u(y) for x

I new lower bound equation M+ · l(y) + M− · u(y) + o

I new upper bound equation M+ · u(y) + M− · l(y) + o

Singh et al (POPL 2019). An Abstract Domain for Certifying Neural Networks.

Wang et al (NeurIPS 2018). Efficient Formal Safety Analysis of Neural Networks.

Weng et al (ICML 2018). Towards Fast Computation of Certified Robustness for ReLU Networks.

54.7%

Symbolic Interval Propagation 99

[l1,u1]

z1

[l2,u2]

z2

[l0,u0]

x0 x1 x2

[l3,u3]

x3

W 1x0 + b1 W 2x1 + b2

W 3x2 + b3

Υl1,u1,z1

Λl1,u1,z1

Υl2,u2,z2

Λl2,u2,z2

leq1, ueq1
leq2, ueq2 leq3, ueq3

Substituting the equations backwards until the input layer

I current equation Mx+ o, local equations l(y) and u(y) for x

I new lower bound equation M+ · l(y) + M− · u(y) + o

I new upper bound equation M+ · u(y) + M− · l(y) + o

Singh et al (POPL 2019). An Abstract Domain for Certifying Neural Networks.

Wang et al (NeurIPS 2018). Efficient Formal Safety Analysis of Neural Networks.

Weng et al (ICML 2018). Towards Fast Computation of Certified Robustness for ReLU Networks.

54.7%

Symbolic Interval Propagation 99

[l1,u1]

z1

[l2,u2]

z2

[l0,u0]

x0 x1 x2

[l3,u3]

x3

W 1x0 + b1 W 2x1 + b2

W 3x2 + b3

Υl1,u1,z1

Λl1,u1,z1

Υl2,u2,z2

Λl2,u2,z2

leq1, ueq1
leq2, ueq2 leq3, ueq3

Substituting the equations backwards until the input layer

I current equation Mx+ o, local equations l(y) and u(y) for x

I new lower bound equation M+ · l(y) + M− · u(y) + o

I new upper bound equation M+ · u(y) + M− · l(y) + o

Singh et al (POPL 2019). An Abstract Domain for Certifying Neural Networks.

Wang et al (NeurIPS 2018). Efficient Formal Safety Analysis of Neural Networks.

Weng et al (ICML 2018). Towards Fast Computation of Certified Robustness for ReLU Networks.

54.7%

Symbolic Interval Propagation 99

[l1,u1]

z1

[l2,u2]

z2

[l0,u0]

x0 x1 x2

[l3,u3]

x3

W 1x0 + b1 W 2x1 + b2

W 3x2 + b3

Υl1,u1,z1

Λl1,u1,z1

Υl2,u2,z2

Λl2,u2,z2

leq1, ueq1
leq2, ueq2 leq3, ueq3

Substituting the equations backwards until the input layer

I current equation Mx+ o, local equations l(y) and u(y) for x

I new lower bound equation M+ · l(y) + M− · u(y) + o

I new upper bound equation M+ · u(y) + M− · l(y) + o

Singh et al (POPL 2019). An Abstract Domain for Certifying Neural Networks.

Wang et al (NeurIPS 2018). Efficient Formal Safety Analysis of Neural Networks.

Weng et al (ICML 2018). Towards Fast Computation of Certified Robustness for ReLU Networks.

54.7%

Symbolic Interval Propagation 99

[l1,u1]

z1

[l2,u2]

z2

[l0,u0]

x0 x1 x2

[l3,u3]

x3

W 1x0 + b1 W 2x1 + b2

W 3x2 + b3

Υl1,u1,z1

Λl1,u1,z1

Υl2,u2,z2

Λl2,u2,z2

leq1, ueq1

leq2, ueq2

leq3, ueq3

Substituting the equations backwards until the input layer

I current equation Mx+ o, local equations l(y) and u(y) for x

I new lower bound equation M+ · l(y) + M− · u(y) + o

I new upper bound equation M+ · u(y) + M− · l(y) + o

Singh et al (POPL 2019). An Abstract Domain for Certifying Neural Networks.

Wang et al (NeurIPS 2018). Efficient Formal Safety Analysis of Neural Networks.

Weng et al (ICML 2018). Towards Fast Computation of Certified Robustness for ReLU Networks.

54.7%

Symbolic Interval Propagation 99

[l1,u1]

z1

[l2,u2]

z2

[l0,u0]

x0 x1 x2

[l3,u3]

x3

W 1x0 + b1 W 2x1 + b2

W 3x2 + b3

Υl1,u1,z1

Λl1,u1,z1

Υl2,u2,z2

Λl2,u2,z2

leq1, ueq1
leq2, ueq2 leq3, ueq3

Substituting the equations backwards until the input layer

I current equation Mx+ o, local equations l(y) and u(y) for x

I new lower bound equation M+ · l(y) + M− · u(y) + o

I new upper bound equation M+ · u(y) + M− · l(y) + o

Singh et al (POPL 2019). An Abstract Domain for Certifying Neural Networks.

Wang et al (NeurIPS 2018). Efficient Formal Safety Analysis of Neural Networks.

Weng et al (ICML 2018). Towards Fast Computation of Certified Robustness for ReLU Networks.

54.7%

Symbolic Interval Propagation 99

[l1,u1]

z1

[l2,u2]

z2

[l0,u0]

x0 x1 x2

[l3,u3]

x3

W 1x0 + b1 W 2x1 + b2 W 3x2 + b3Υl1,u1,z1

Λl1,u1,z1

Υl2,u2,z2

Λl2,u2,z2

leq1, ueq1
leq2, ueq2 leq3, ueq3

Substituting the equations backwards until the input layer

I current equation Mx+ o, local equations l(y) and u(y) for x

I new lower bound equation M+ · l(y) + M− · u(y) + o

I new upper bound equation M+ · u(y) + M− · l(y) + o

Singh et al (POPL 2019). An Abstract Domain for Certifying Neural Networks.

Wang et al (NeurIPS 2018). Efficient Formal Safety Analysis of Neural Networks.

Weng et al (ICML 2018). Towards Fast Computation of Certified Robustness for ReLU Networks.

54.7%

Symbolic Interval Propagation 99

[l1,u1]

z1

[l2,u2]

z2

[l0,u0]

x0 x1 x2

[l3,u3]

x3

W 1x0 + b1 W 2x1 + b2 W 3x2 + b3Υl1,u1,z1

Λl1,u1,z1

Υl2,u2,z2

Λl2,u2,z2

leq1, ueq1
leq2, ueq2

leq3, ueq3

Substituting the equations backwards until the input layer

I current equation Mx+ o, local equations l(y) and u(y) for x

I new lower bound equation M+ · l(y) + M− · u(y) + o

I new upper bound equation M+ · u(y) + M− · l(y) + o

Singh et al (POPL 2019). An Abstract Domain for Certifying Neural Networks.

Wang et al (NeurIPS 2018). Efficient Formal Safety Analysis of Neural Networks.

Weng et al (ICML 2018). Towards Fast Computation of Certified Robustness for ReLU Networks.

54.7%

Symbolic Interval Propagation 99

[l1,u1]

z1

[l2,u2]

z2

[l0,u0]

x0 x1 x2

[l3,u3]

x3

W 1x0 + b1 W 2x1 + b2 W 3x2 + b3Υl1,u1,z1

Λl1,u1,z1

Υl2,u2,z2

Λl2,u2,z2

leq1, ueq1
leq2, ueq2 leq3, ueq3

Substituting the equations backwards until the input layer

I current equation Mx+ o, local equations l(y) and u(y) for x

I new lower bound equation M+ · l(y) + M− · u(y) + o

I new upper bound equation M+ · u(y) + M− · l(y) + o

Singh et al (POPL 2019). An Abstract Domain for Certifying Neural Networks.

Wang et al (NeurIPS 2018). Efficient Formal Safety Analysis of Neural Networks.

Weng et al (ICML 2018). Towards Fast Computation of Certified Robustness for ReLU Networks.

54.7%

Symbolic Interval Propagation 99

[l1,u1]

z1

[l2,u2]

z2

[l0,u0]

x0 x1 x2

[l3,u3]

x3

W 1x0 + b1 W 2x1 + b2 W 3x2 + b3Υl1,u1,z1

Λl1,u1,z1

Υl2,u2,z2

Λl2,u2,z2

leq1, ueq1
leq2, ueq2 leq3, ueq3

Substituting the equations backwards until the input layer

I current equation Mx+ o, local equations l(y) and u(y) for x

I new lower bound equation M+ · l(y) + M− · u(y) + o

I new upper bound equation M+ · u(y) + M− · l(y) + o

Singh et al (POPL 2019). An Abstract Domain for Certifying Neural Networks.
Wang et al (NeurIPS 2018). Efficient Formal Safety Analysis of Neural Networks.

Weng et al (ICML 2018). Towards Fast Computation of Certified Robustness for ReLU Networks.

55.25%

Table of Contents 100

Introduction

Falsification through Adversarial Attack
Algorithms for Adversarial Attacks
More Examples of Adversarial Attacks

Rectification through Adversarial Training
Adversarial Training
Distributional Robustness
Robustness vs Generalisation

Robustness Verification
Over-approximation Techniques
Constraint Solving Techniques
Abstraction and Refinement Techniques

Verification in Practice

Conclusions and Future Directions

55.8%

Constraint solving approaches 101

1. Encode as a set of linear constraints
I the network
I the input property
I the negation of the output property

2. Check feasibility of the given set of constraints
I If feasible ⇒ a counter-example can be extracted from the satisfying assignment
I Otherwise, it has been formally shown that the property is satisfied

Work for neural networks with piecewise linear activation functions.

56.35%

Satisfiability Modulo Theories approach 102

Satisfiability of Boolean formulas with special predicates:

I e.g., linear inequalities

I Simplex is a standard decision procedure for conjunctions of linear atoms.

Verification of Neural Networks:

1. Linear network constraints ⇒ linear inequalities

2. Non-linear ReLU ⇒ special ReLU constraint ReLU(zij ,x
i
j)

3. The simplex calculus is extended to handle ReLU constraints: Reluplex

4. SMT-based techniques are used to find a satisfying assignment

Katz et al (CAV 2017). Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks.
Katz et al (CAV 2019). The Marabou Framework for Verification and Analysis of Deep Neural Networks.

56.91%

Mixed-Integer Linear Programming approach 103

Feasibility of a set of linear inequalities over real and integer-valued variables.

Verification of Neural Networks:

I Piecewise linear non-linearities can be directly encoded
using binary and integer variables.

I Off-the-shelf MILP solvers can be used to check feasibility of the encoding.
I modern MILP solvers are very powerful

Lomuscio and Maganti (Arxiv 2017). An approach to reachability analysis for feed-forward ReLU neural networks.
Cheng, Nührenberg and Ruess (CAV 2017). Maximum resilience of artificial neural networks.
Fischetti and Jo (Constraints 2018). Deep neural networks and mixed integer linear optimization.
Tjeng, Xiao and Tedrake (ICLR 2019). Evaluating Robustness Of Neural Networks With Mixed Integer Programming.

57.46%

MILP Encoding of the Local Robustness Verification Problem 104

I Weighted sum

zi = W ixi−1 + bi

I ReLU constraint xij = ReLU(zij) when lij < 0 < uij

xij ≥ 0
xij ≥ zij

xij ≤ uij · δij
xij ≤ zij − lij · (1− δij)

δij = 0⇒ xij = 0, inactive
δij = 1⇒ xij = zij , active

I Input property ||x0 − x̂||∞ ≤ r

x̂j − r ≤ x0
j ≤ x̂j + r

I (Negation of) output property arg maxi x
k
i = arg maxiN(x̂)i = c∨

j 6=c

xkj ≥ xkc :
β1 + · · ·+ βsk = 1, βc = 0
(βj = 1)⇒ xkj ≥ xkc , j 6= c

Tjeng, Xiao and Tedrake (ICLR 2019). Evaluating Robustness Of Neural Networks With Mixed Integer Programming.

58.01%

Can We Leverage NN Structure to Speed Up Verification? 105

Branch-and-bound Procedure

1. Solve the linear relaxation of the program (integer variables can take real values).

2. If the solution satisfies all integer constraints → terminate.

3. Otherwise, branch on an integer variable with fractional value.

4. Repeat for each sub-problem.

x0
1

x0
2

x1
1

x1
2

x2
1

x2
2

δ1
1

δ1
2 δ1

2

· · · · · · · · · · · ·

≤ 0 ≥ 1

≤ 0 ≥ 1 ≤ 0 ≥ 1

58.56%

Dependency Relation between ReLU Nodes 106

Unstable nodes niq and njr are in a dependency relation,

if fixing niq in some stable state, fixes njr in a stable state as well, and the other way around.

x0
1

x0
2

W 1x0 + b1

z1
1

z1
2

δ11

δ12 δ12

· · · · · · · · · · · ·

= 0 = 1

= 0 = 1 = 0 = 1

Reduction of the search space.

Dependency between n1
1 and n1

2: . As MILP constraint: (1− δ11) + δ12 ≥ 1 .

Botoeva et al (AAAI 2020). Efficient Verification of ReLU-based Neural Networks via Dependency Analysis.

58.56%

Dependency Relation between ReLU Nodes 106

Unstable nodes niq and njr are in a dependency relation,

if fixing niq in some stable state, fixes njr in a stable state as well, and the other way around.

x0
1

x0
2

W 1x0 + b1

z1
1

z1
2

δ11

δ12 δ12

· · · · · · · · · · · ·

= 0 = 1

= 0 = 1 = 0 = 1

Reduction of the search space.

Dependency between n1
1 and n1

2: . As MILP constraint: (1− δ11) + δ12 ≥ 1 .

Botoeva et al (AAAI 2020). Efficient Verification of ReLU-based Neural Networks via Dependency Analysis.

58.56%

Dependency Relation between ReLU Nodes 106

Unstable nodes niq and njr are in a dependency relation,

if fixing niq in some stable state, fixes njr in a stable state as well, and the other way around.

x0
1

x0
2

W 1x0 + b1

z1
1

z1
2

δ11

δ12 δ12

· · · · · · · · · · · ·

= 0 = 1

= 0 = 1 = 0 = 1

Reduction of the search space.

Dependency between n1
1 and n1

2: . As MILP constraint: (1− δ11) + δ12 ≥ 1 .

Botoeva et al (AAAI 2020). Efficient Verification of ReLU-based Neural Networks via Dependency Analysis.

58.56%

Dependency Relation between ReLU Nodes 106

Unstable nodes niq and njr are in a dependency relation,

if fixing niq in some stable state, fixes njr in a stable state as well, and the other way around.

x0
1

x0
2

W 1x0 + b1

z1
1

z1
2

δ11

δ12 δ12

· · · · · · · · · · · ·

= 0 = 1

= 0 = 1 = 0 = 1

Reduction of the search space.

Dependency between n1
1 and n1

2: (δ11 = 1)→ (δ12 = 1).

As MILP constraint: (1− δ11) + δ12 ≥ 1 .

Botoeva et al (AAAI 2020). Efficient Verification of ReLU-based Neural Networks via Dependency Analysis.

58.56%

Dependency Relation between ReLU Nodes 106

Unstable nodes niq and njr are in a dependency relation,

if fixing niq in some stable state, fixes njr in a stable state as well, and the other way around.

x0
1

x0
2

W 1x0 + b1

z1
1

z1
2

δ11

δ12 δ12

· · · · · · · · · · · ·

= 0 = 1

= 0 = 1 = 0 = 1

Reduction of the search space.

Dependency between n1
1 and n1

2: (δ11 = 0) ∨ (δ12 = 1). As MILP constraint: (1− δ11) + δ12 ≥ 1 .

Botoeva et al (AAAI 2020). Efficient Verification of ReLU-based Neural Networks via Dependency Analysis.

58.56%

Dependency Relation between ReLU Nodes 106

Unstable nodes niq and njr are in a dependency relation,

if fixing niq in some stable state, fixes njr in a stable state as well, and the other way around.

x0
1

x0
2

W 1x0 + b1

z1
1

z1
2

δ11

δ12 δ12

· · · · · · · · · · · ·

= 0 = 1

= 0 = 1 = 0 = 1

Reduction of the search space.

Dependency between n1
1 and n1

2: (δ11 = 0) ∨ (δ12 = 1). As MILP constraint: (1− δ11) + δ12 ≥ 1 .

Botoeva et al (AAAI 2020). Efficient Verification of ReLU-based Neural Networks via Dependency Analysis.

59.12%

Intra- and Inter-layer dependencies 107

Intra-layer dependencies

z1
1

z1
2

(δ11 = 1)→ (δ12 = 0)

z1
1

z1
2

(δ11 = 0)→ (δ12 = 1)

z1
1

z1
2

(δ11 = 0)→ (δ12 = 0)

z1
1

z1
2

(δ11 = 1)→ (δ12 = 1)

Inter-layer dependencies

z1
1[−1, 2]

z1
2[−2, 1]

x1
1

[0, 2]

x1
2

[0, 1]

z2
1 [−1, 2]

1

−1

[−2, 0]
[0, 0]

[0, 2]
(δ12 = 0)→ (δ21 = 1)

[−1, 0]
[0, 0]

[−1, 0]
(δ11 = 0)→ (δ21 = 0)

59.12%

Intra- and Inter-layer dependencies 107

Intra-layer dependencies

z1
1

z1
2

(δ11 = 1)→ (δ12 = 0)

z1
1

z1
2

(δ11 = 0)→ (δ12 = 1)

z1
1

z1
2

(δ11 = 0)→ (δ12 = 0)

z1
1

z1
2

(δ11 = 1)→ (δ12 = 1)

Inter-layer dependencies

z1
1[−1, 2]

z1
2[−2, 1]

x1
1

[0, 2]

x1
2

[0, 1]

z2
1 [−1, 2]

1

−1

[−2, 0]
[0, 0]

[0, 2]
(δ12 = 0)→ (δ21 = 1)

[−1, 0]
[0, 0]

[−1, 0]
(δ11 = 0)→ (δ21 = 0)

59.12%

Intra- and Inter-layer dependencies 107

Intra-layer dependencies

z1
1

z1
2

(δ11 = 1)→ (δ12 = 0)

z1
1

z1
2

(δ11 = 0)→ (δ12 = 1)

z1
1

z1
2

(δ11 = 0)→ (δ12 = 0)

z1
1

z1
2

(δ11 = 1)→ (δ12 = 1)

Inter-layer dependencies

z1
1[−1, 2]

z1
2[−2, 1]

x1
1

[0, 2]

x1
2

[0, 1]

z2
1 [−1, 2]

1

−1
[−2, 0]

[0, 0]

[0, 2]
(δ12 = 0)→ (δ21 = 1)

[−1, 0]
[0, 0]

[−1, 0]
(δ11 = 0)→ (δ21 = 0)

59.12%

Intra- and Inter-layer dependencies 107

Intra-layer dependencies

z1
1

z1
2

(δ11 = 1)→ (δ12 = 0)

z1
1

z1
2

(δ11 = 0)→ (δ12 = 1)

z1
1

z1
2

(δ11 = 0)→ (δ12 = 0)

z1
1

z1
2

(δ11 = 1)→ (δ12 = 1)

Inter-layer dependencies

z1
1[−1, 2]

z1
2[−2, 1]

x1
1

[0, 2]

x1
2

[0, 1]

z2
1 [−1, 2]

1

−1

[−2, 0]
[0, 0]

[0, 2]
(δ12 = 0)→ (δ21 = 1)

[−1, 0]
[0, 0]

[−1, 0]
(δ11 = 0)→ (δ21 = 0)

59.67%

Inserting Dependency Cuts 108

1. Stop the branch-and-bound procedure at runtime.

δ11

δ12 δ12

· · · δ21 · · · · · ·

= 0 = 1

= 0 = 1 = 0 = 1

2. Compute the dependencies given the partial assignment to δij .

e.g., (δ2
1 = 0) ∨ (δ2

2 = 1) when δ1
1 = 0 and δ1

2 = 1

3. Add the dependencies as MILP constraints to the MILP formulation.

(1− δ2
1) + δ2

2 + δ1
1 + (1− δ1

2)︸ ︷︷ ︸
0 under the current branch

≥ 1

60.22%

Table of Contents 109

Introduction

Falsification through Adversarial Attack
Algorithms for Adversarial Attacks
More Examples of Adversarial Attacks

Rectification through Adversarial Training
Adversarial Training
Distributional Robustness
Robustness vs Generalisation

Robustness Verification
Over-approximation Techniques
Constraint Solving Techniques
Abstraction and Refinement Techniques

Verification in Practice

Conclusions and Future Directions

60.77%

Abstraction and Refinement approaches 110

1. Verify using a fast incomplete method

2. If property holds → return success

3. If a counter-example found → return failure

4. If unknown → refine the verification problem

5. Repeat for each sub-problem

Refinement for over-approximation based abstraction:

I Input domain splitting

I ReLU node splitting

61.33%

Input Domain Splitting 111

1. Bisect the input interval along one of the dimensions
I smaller input intervals ⇒ smaller over-approximation error.

2. Heuristics for choosing the dimension to split.

3. Works well for low dimensional inputs.

4. Can be used with arbitrary activation functions to produce better output bounds.

5. Can be used in conjunction with constraint solving approaches.

Wang et al (NeurIPS 2018). Formal Security Analysis of Neural Networks using Symbolic Intervals.
Rubies-Royo et al (Arxiv 2019). Fast Neural Network Verification via Shadow Prices.
Katz et al (CAV 2019). The Marabou Framework for Verification and Analysis of Deep Neural Networks.
Botoeva et al (AAAI 2020). Efficient Verification of ReLU-based Neural Networks via Dependency Analysis.

61.88%

ReLU Node Splitting 112

1. Stabilise an unstable ReLU node
I no need for linear relaxation ⇒ smaller over-approximation error.

2. Heuristics for choosing the node to split.

3. Works well for high dimensional inputs.

4. Might require using an LP solver.

Wang et al (NeurIPS 2018). Efficient Formal Safety Analysis of Neural Networks.
Henriksen and Lomuscio (ECAI 2020). Efficient Neural Network Verification via Adaptive Refinement and
Adversarial Search.
Bak (VNN 2020). Execution-Guided Overapproximation (EGO) for Improving Scalability of Neural Network
Verification.
Henriksen and Lomuscio (IJCAI 2021). DEEPSPLIT: An Efficient Splitting Method for Neural Network
Verification via Indirect Effect Analysis.
Kouvaros and Lomuscio (IJCAI 2021). Towards Scalable Complete Verification of ReLU Neural Networks via
Dependency-based Branching.

62.43%

Other Abstraction Methods 113

I Ashok et al (ATVA 2020). DeepAbstract: Neural Network Abstraction for Accelerating
Verification.

I Elboher, Gottschlich and Katz (CAV 2020). An Abstraction-Based Framework for Neural
Network Verification.

I Prabhakar and Rahimi Afzal (NeurIPS 2019). Abstraction based Output Range Analysis for
Neural Networks.

I Sotoudeh and Thakur (Arxiv 2020). Abstract Neural Networks.

62.98%

Concluding Remarks 114

I Scalability remains the main concern

I Holistic approach to training and verification
I models that are easier to verify

I Other kind of verification properties

63.54%

Table of Contents 115

Introduction

Falsification through Adversarial Attack
Algorithms for Adversarial Attacks
More Examples of Adversarial Attacks

Rectification through Adversarial Training
Adversarial Training
Distributional Robustness
Robustness vs Generalisation

Robustness Verification
Over-approximation Techniques
Constraint Solving Techniques
Abstraction and Refinement Techniques

Verification in Practice

Conclusions and Future Directions

Verification in Practice

64.09 %

64.64%

What are the practical needs of verification? 117

I More properties to be verified.
I robustness – local property for input perturbation
I generalisation – global property for unseen data
I security properties such as backdoor

I Different ways of expressing whether or not a model is dependable.
I confirm whether or not a property holds
I finding counterexamples
I statistical evaluation
I lower/upper bounds of a certain quantity

65.19%

What are the practical needs of verification? 118

I Scalable to work with real-world neural networks
I different types of layers and activation functions
I large network (depth, width, etc)

I Concerns all inputs that may appear in operational time
I Reliability, which describes the ability of a system or component to function under

stated conditions for a specified period of time.

65.75%

Approaches towards making verification practical 119

To be included in this tutorial:

I For local properties such as robustness
I Global optimisation based methods – converging bounds
I Sampling based methods – statistical bounds
I Testing methods – use metrics to decide if the tests are sufficient

I For reliability
I Assessment method based on the production of (global) generalisation and (local)

robustness

Verification in Practice

↪→Converging Bounds Methods

66.3 %

66.85%

General idea of converging bounds method 121

67.4%

DeepGo – A Verification Method [Ruan et al., 2018] 122

[Huang et al., 2017] (CAV2017) Safety verification of deep neural networks.

[Wicker et al., 2018] (TACAS2018) Feature-guided black-box safety testing of deep
neural networks

[Ruan et al., 2018] (IJCAI2018) Reachability Analysis of Deep Neural Networks with
Provable Guarantees.

[Ruan et al., 2019] (IJCAI2019) Global Robustness Evaluation of Deep Neural Networks
with Provable Guarantees for the Hamming Distance,

[Wu et al., 2020] (Theoretical Computer Science, 2020) A game-based approximate
verification of deep neural networks with provable guarantees.

67.96%

Reachability Analysis – Lipschitz Networks 123

The following layers are Lipschitz continuous:

I convolutional with ReLU activation functions,

I fully connected layers with ReLU activation functions,

I max pooling

I contrast-normalization

I softmax (proved in this paper)

I sigmoid (proved in this paper)

I Hyperbolic tangent (proved in this paper)

Cover all layers used in e.g., image classification networks.

68.51%

Reachability Analysis – Generic Definition 124

Let o : [0, 1]m → R be a Lipschitz continuous function statistically evaluating the
outputs of the network.

Connect the network f with function o, i.e., o(f(x))

69.06%

Reachability Analysis – Generic Definition 125

Let X ′ ⊆ [0, 1]n be an input subspace and f : Rn → Rm a network. The reachability
of f over the function o under an error tolerance ε ≥ 0 is a set R(o,X ′, ε) = [l, u] such
that

l ≥ inf
x′∈X′

o(f(x′))− ε and u ≤ sup
x′∈X′

o(f(x′)) + ε. (4)

We write u(o,X ′, ε) = u and l(o,X ′, ε) = l for the upper and lower bound,
respectively.

69.61%

Reachability Analysis – Generic Definition 126

The instantiation of the o function will enable us to express several problems with a
single formalism.

I output range analysis

I safety/robustness verification

I robustness comparison between networks and input subregions

70.17%

Reachability Analysis – Instantiations 127

I (Safety Definition) A network f is safe with respect to an input x and an input
subspace X ′ ⊆ [0, 1]n with x ∈ X ′ if

∀x′ ∈ X ′ : arg max
j
cj(x

′) = arg max
j
cj(x) (5)

I (Instantiation for safety) A network f is safe with respect to x and X ′ s.t. x ∈ X ′
if and only if

u(⊕, X ′, ε) ≤ 0

where j = arg maxj cj(x),
⊕(c1, ..., cm) = maxi∈{1..m}(Πi(c1, ..., cm)−Πj(c1, ..., cm)). The error bound of
the safety decision problem by this reduction is 2ε.

70.72%

computation of the minimum value 128

Let w = o·f . The computation of the minimum value is reduced to solving the
following optimization problem with guaranteed convergence to the global minimum.

min
x

w(x), s.t. x ∈ [a, b]n (6)

The maximization problem can be transferred into a minimization problem.

71.27%

Algorithmic Idea 129

Design another continuous function h(x, y), which serves as a lower bound of the
original function w(x). Specifically, we need

h(x, y) ≤ w(x), ∀x, y ∈ [a, b]n, h(x, x) = w(x) (7)

Furthermore, for i ≥ 0, we let Yi = {y0, y1, ..., yi} be a finite set containing i+ 1
points from the input space [a, b]n, and let Yi ⊆ Yk when k > i, then we can define a
function H(x;Yi) = maxy∈Yi h(x, y) which satisfies the following relation:

H(x;Yi) < H(x;Yk) ≤ w(x) (8)

71.82%

Algorithmic Idea 130

We use li = infx∈[a,b]n H(x;Yi) to denote the minimum value of H(x;Yi) for
x ∈ [a, b]n. Then we have

l0 < l1 < ... < li−1 < li ≤ inf
x∈[a,b]n

w(x)

Similarly, we need a sequence of upper bounds ui to have

l0 < ... < li ≤ inf
x∈[a,b]n

w(x) ≤ ui < ... < u0 (9)

By Expression (9), we can have the following:

lim
i→∞

li = min
x∈[a,b]n

w(x) and lim
i→∞

(ui − li) = 0 (10)

72.38%

One-dimensional Optimisation 131

Let h(x, y) = w(y)−K|x− y|

−𝐾

Upper Bound

𝐾

𝑦𝑘 𝑦𝑘+1𝑦𝑖

𝑤(𝑦𝑘)

𝑤(𝑦𝑘+1)

𝒛∗

Lower Bound

−𝐾

Upper Bound

𝐾

𝑦𝑘 𝑦𝑘+2𝑦𝑘+1

𝑤(𝑦𝑘)

𝑤(𝑦𝑘+2)

Lower Bound

−𝐾
𝐾

Figure: Computation of next yi

72.93%

Experimental Results 132

Figure: Comparison with SHERLOCK and Reluplex

Computational complexity is NP-complete over the input dimension, instead of number
of neurons.

Verification in Practice

↪→Sampling-based Methods

73.48 %

74.03%

CLEVER [Weng et al., 2018] 134

I A lower bound of Lp minimum adversarial distortion βL
I Extreme Value Theory ensures that the maximum value of random variables can

only follow one of the three extreme value distributions.

[Weng et al., 2018] (ICLR2018) Evaluating The Robustness Of Neural Networks: An Extreme

Value Theory Approach

74.59%

Statistical Assessment [Webb et al., 2019] 135

I a naive Monte Carlo sampling does not work well for high-dimensional problems.

I an adaptation of multi-level splitting, a Monte Carlo approach for estimating the
probability of rare events.

[Webb et al., 2019] (ICLR2019) A Statistical Approach To Assessing Neural Network

Robustness

Verification in Practice

↪→Software Testing Methods

75.14 %

75.69%

Software Testing Methods 137

I Well established in many industrial standard for software used in safety critical
systems, such as ISO26262 for automotive systems and DO 178B/C for avionic
systems.

I Coverage Metrics
I structural coverage
I scenario coverage

I Test Case Generation Methods
I fuzzing
I symbolic execution, etc

I to determine if the generated test cases include bugs.

76.24%

Software Testing Methods for Neural Networks 138

I Industrial standards need to be upgraded

I A few Coverage Metrics [Pei et al., 2017, Sun et al., 2019]

I A few Test Case Generation Methods [Sun et al., 2018]

I Use a set of generated test cases to either finding bugs or evaluating the
performance of a neural network

[Pei et al., 2017] (SOSP2017) DeepXplore: Automated Whitebox Testing of Deep Learning
Systems.
[Sun et al., 2019] (EMSOFT2019) Structural Test Coverage Criteria for Deep Neural Networks.

[Sun et al., 2018] (ASE2018) Concolic Testing for Deep Neural Networks.

76.8%

Coverage Metrics 139

I Neuron Coverage [Pei et al., 2017]: to make sure that all neurons have been
activated in at least one of the test cases

I boundary coverage : to make sure the boundary values of each neuron is reached.

I MC/DC coverage [Sun et al., 2019]: to make sure that every neuron in a layer
can independently activate the neurons in the next layer.

77.35%

MC/DC coverage [Sun et al., 2019] – General Idea 140

The core idea of our criteria is to ensure that not only the presence of a feature needs
to be tested but also the effects of less complex features on a more complex feature
must be tested.

v1,1

v1,2

v4,1

v4,2

n2,1

n2,2

n2,3

n3,1

n3,2

n3,3

For example, check the impact of n2,1, n2,2, n2,3 on n3,1.

77.9%

MC/DC for DNNs – Neuron Pair and Sign Change 141

(Sign Change of a neuron) Given a neuron nk,l and two test cases x1 and x2, we say
that the sign change of nk,l is exploited by x1 and x2, denoted as sc(nk,l, x1, x2), if
sign(vk,l[x1]) 6= sign(vk,l[x2]).

78.45%

MC/DC for DNNs – Sign-Sign Cover, or SS Cover 142

A neuron pair (nk,i, nk+1,j) are two neurons in adjacent layers k and k + 1 such that
1 ≤ k ≤ K − 1, 1 ≤ i ≤ sk, and 1 ≤ j ≤ sk+1.

A neuron pair α = (nk,i, nk+1,j) is SS-covered by two test cases x1, x2, denoted as
SS(α, x1, x2), if the following conditions are satisfied by the network instances N [x1]
and N [x2]:

I sc(nk,i, x1, x2);

I ¬sc(nk,l, x1, x2) for all
nk,l ∈ Pk \ {i};

I sc(nk+1,j , x1, x2).

79.01%

Research Dealing with DL Vulnerability 143

Then, what is the state-of-the-art on DNN Verification?

I Robustness

What is the actual need for certification?

I Reliability, e.g., the probability of no failure at all in the next prediction.

Verification in Practice

↪→Reliability Assessment

79.56 %

80.11%

Reliability 145

I Reliability is required by industrial standards
I consider e.g., the probability of no failure at all for the next 10k input
I safety integrity levels (SIL1 - SIL4), as in IEC 61508 standard for “Functional Safety

of Electrical/Electronic/ Programmable Electronic Safety-related Systems”

I From Robustness to Reliability? [Zhao et al., 2020]
I We do not know what the next input will be.
I Generalisability!

[Zhao et al., 2020] (SafeCOMP2020) A Safety Framework for Critical Systems Utilising Deep

Neural Networks

80.66%

What is generalisation failure? 146

Note: far away from known data 6= far away from boundary

81.22%

What do we already have? 147

81.77%

Reliability 148

What is reliability in the context of deep learning?

Reliability = Generalisation× Robustness

i.e., we have the following definition for reliability [Zhao et al., 2021]

λ :=
∑
x∈D

I{x causes a failure}(x)Op(x) (11)

where Op(x) captures the uncertainty of “which one would be the next input”.

[Zhao et al., 2021] (AISafety2021) Assessing the Reliability of Deep Learning Classifiers

Through Robustness Evaluation and Operational Profiles

82.32%

How to evaluate reliability? 149

I This requires to verify
I Op(x): Probability Density Estimation, and
I I(x): the robustness of the possible inputs, which can be done with DNN verification

I based on an assumption that different inputs’ local robustness are independent.

I i.e., we need to explore a partition of the input space, and use Op(x) to weight
the verification results of cells

82.87%

Partition and Cell Size 150

I Binning, to partition the input space as cells
I r-separation [Yang et al., 2020]: a data distribution over

⋃
i∈C X i is r-separable if

for all i, j ∈ C
min

x∈X i,x′∈X j
dist(x, x′) ≥ 2r

I use r as the radius of the cells

I need a balance between cost vs precision

83.43%

How to evaluate reliability? 151

Figure: Part of the results for Siemens’ Artificial Intelligence Dependability Assessment
challenge.

I How to make the estimation more precise?
I local robustness computation cannot be speed up.
I So, deal with networks with better generalisability! How?

83.98%

Generalisability 152

Considering an important open question – Is there any structural information that
can be utilised to determine the generalisation ability of deep neural
networks? [Jin et al., 2020]

[Jin et al., 2020] (NeurIPS2020) How does Weight Correlation Affect the Generalisation

Ability of Deep Neural Networks.

84.53%

PAC-Bayes Bound 153

(McAllester, 1999) considers a generalization bound on the parameters

KL divergence plays a key role in the generalization bound

I a small KL term will help tighten the bound

I a larger KL term will loose the bound

85.08%

PAC Bayes + Weight Correlation 154

I Relax the i.i.d. assumption on the posterior distribution, consider weight
correlation, in order to achieve a tighter lower bound and a better prediction
ability.

I Found that there are structural components that affect the generalisability of
neural networks

85.64%

PAC Bayes + Weight Correlation 155

Figure: (FCN) WC of any two neurons is the cosine similarity of the associated weight vectors.
(CNN) WC of any two filters is the cosine similarity of the reshaped filter matrices.

[Jin et al., 2020] (NeurIPS2020) How does Weight Correlation Affect the Generalisation

Ability of Deep Neural Networks.

86.19%

PAC Bayes + Weight Correlation 156

I Enable the design of new measure (in the next slide) which can serve as a
strong/direct indicator of the generalisation. Roughly, lower weight correlation
suggests a better PAC Bayes bound, i.e., smaller generalisation gap and better
generalisation ability.

86.74%

PAC Bayes + Weight Correlation 157

87.29%

PAC Bayes + Weight Correlation 158

I Enable the design of new measure (in the next slide) which can serve as a strong
indicator of the generalisation. Roughly, lower weight correlation suggests a better
PAC Bayes bound, i.e., smaller generalisation gap and better generalisation ability.

I The training process by monitoring and adapting this measure can lead to models
with better generalisation.

87.85%

PAC Bayes + Weight Correlation 159

I Enable the design of new measure (in the next slide) which can serve as a strong
indicator of the generalisation. Roughly, lower weight correlation suggests a better
PAC Bayes bound, i.e., smaller generalisation gap and better generalisation ability.

I The training process by monitoring and adapting this measure can lead to models
with better generalisation.

I Now close the loop: use structural information to improve the generalisation of
neural network, on which reliability estimation is more accurate.

88.4%

Table of Contents 160

Introduction

Falsification through Adversarial Attack
Algorithms for Adversarial Attacks
More Examples of Adversarial Attacks

Rectification through Adversarial Training
Adversarial Training
Distributional Robustness
Robustness vs Generalisation

Robustness Verification
Over-approximation Techniques
Constraint Solving Techniques
Abstraction and Refinement Techniques

Verification in Practice

Conclusions and Future Directions

Conclusions and Future Directions

88.95 %

89.5%

Relationship between Attacks/Defences/Verification 162

I Falsification through Attacks: identify risks

I Rectification through Defence: reduce risks

I Verification: prove the absence of risks

90.06%

ML Development Cycle 163

with Falsification/Rectification/Verification in mind,

90.52%

Future Directions – Adversarial Attacks 164

I A proper metric that is of high fidelity to human perception would be key for high-quality attacks

I Attacks essentially prove the non-robustness of the model, so combining attacks (or falsification)
with verification could provide a more balanced and efficient way for certified robustness
evaluation

I Developing black-box attacks that the adversary can only access the hard label with limited
queries

I Exploring empirical and theoretical connections between adversarial robustness and interpretability

I Exploring adversarial attacks that can resemble a wide range of real-world adversarial
instances/scenarios

I Attacking solutions that are independent of a certain distance metric (or workable on multiple
distance metrics)

I The empirical and theoretical relations between universal attacks and global robustness (or
robustness of model structure that is independent of concrete inputs)

90.52%

Future Directions – Adversarial Defence 165

I Theoretical understanding of adversarial training
I What is the trade-off between robustness and accuracy?
I How to optimally integrate both local and global information?
I How does robustness interact with generalisation?

I Adversarial training for semi-supervised or unsupervised learning

I Adversarial training in the distributed learning scenarios, e.g., federated learning

90.52%

Future Directions – Verification 166

I Verification for reliability (i.e., not only robustness),

I Verification of online learning,

I Improved scalability through e.g., abstraction,

I Training for verification: models that are easier to verify,

I etc.

90.52%

References I 167

Ashok, P., Hashemi, V., Kret́ınský, J., and Mohr, S. (2020).
Deepabstract: Neural network abstraction for accelerating verification.
In Hung, D. V. and Sokolsky, O., editors, Proceedings of the 18th International
Symposium on Automated Technology for Verification and Analysis (ATVA20),
volume 12302 of Lecture Notes in Computer Science, pages 92–107. Springer.

Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., and Misener, R. (2020).
Efficient verification of neural networks via dependency analysis.
In Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI20),
pages 3291–3299. AAAI Press.

Cheng, C., Nührenberg, G., and Ruess, H. (2017).
Maximum resilience of artificial neural networks.
In International Symposium on Automated Technology for Verification and
Analysis (ATVA17), pages 251–268. Springer.

90.52%

References II 168

Ehlers, R. (2017).
Formal verification of piece-wise linear feed-forward neural networks.
In Proceedings of the 15th International Symposium on Automated Technology for
Verification and Analysis (ATVA17), volume 10482 of Lecture Notes in Computer
Science, pages 269–286. Springer.

Elboher, Y., Gottschlich, J., and Katz, G. (2020).
An abstraction-based framework for neural network verification.
In Proceedings of the 32nd International Conference on Computer Aided
Verification (CAV20), volume 12224 of Lecture Notes in Computer Science, pages
43–65. Springer.

90.52%

References III 169

Finlayson, S. G., Bowers, J. D., Ito, J., Zittrain, J. L., Beam, A. L., and Kohane,
I. S. (2019).
Adversarial attacks on medical machine learning.
Science, 363(6433):1287–1289.

Finlayson, S. G., Chung, H. W., Kohane, I. S., and Beam, A. L. (2018).
Adversarial attacks against medical deep learning systems.
arXiv preprint arXiv:1804.05296.

Fischetti, M. and Jo, J. (2018).
Deep neural networks and mixed integer linear optimization.
Constraints, 23(3):296–309.

90.52%

References IV 170

Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., and
Vechev, M. (2018).
AI2: Safety and robustness certification of neural networks with abstract
interpretation.
In IEEE Symposium on Security and Privacy (S&P18), pages 948–963.

Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014).
Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572.

Henriksen, P. and Lomuscio, A.
DEEPSPLIT: an efficient splitting method for neural network verification via
indirect effect analysis.
In Zhou, Z., editor, Proceedings of the Thirtieth International Joint Conference on
Artificial Intelligence (IJCAI21), pages 2549–2555. ijcai.org.

90.52%

References V 171

Henriksen, P. and Lomuscio, A. (2020).
Efficient neural network verification via adaptive refinement and adversarial search.
In Proceedings of the 24th European Conference on Artificial Intelligence
(ECAI20), pages 2513–2520. IOS Press.

Huang, X., Kwiatkowska, M., Wang, S., and Wu, M. (2017).
Safety verification of deep neural networks.
In CAV2017, pages 3–29.

Jin, G., Yi, X., Zhang, L., Zhang, L., Schewe, S., and Huang, X. (2020).
How does weight correlation affect the generalisation ability of deep neural
networks.
In NeurIPS’20.

90.52%

References VI 172

Katz, G., Barrett, C., Dill, D., Julian, K., and Kochenderfer, M. (2017).
Reluplex: An efficient SMT solver for verifying deep neural networks.
In Proceedings of the 29th International Conference on Computer Aided
Verification (CAV17), volume 10426 of Lecture Notes in Computer Science, pages
97–117. Springer.

Katz, G., Huang, D., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P.,
Thakoor, S., Wu, H., Zeljic, A., Dill, D., Kochenderfer, M., and Barrett, C.
(2019).
The marabou framework for verification and analysis of deep neural networks.
In Proceedings of the 31st International Conference on Computer Aided
Verification (CAV19), pages 443–452.

90.52%

References VII 173

Kouvaros, P. and Lomuscio, A. (2021).
Towards scalable complete verification of relu neural networks via
dependency-based branching.
In Zhou, Z., editor, Proceedings of the Thirtieth International Joint Conference on
Artificial Intelligence (IJCAI21), pages 2643–2650. ijcai.org.

Lomuscio, A. and Maganti, L. (2017).
An approach to reachability analysis for feed-forward relu neural networks.
arXiv preprint 1706.07351.

Pei, K., Cao, Y., Yang, J., and Jana, S. (2017).
DeepXplore: Automated Whitebox Testing of Deep Learning Systems.
In Proceedings of the 26th Symposium on Operating Systems Principles, SOSP
’17, page 1–18, New York, NY, USA. Association for Computing Machinery.

90.52%

References VIII 174

Prabhakar, P. and Afzal, Z. (2019).
Abstraction based output range analysis for neural networks.
In Proceedings of the Annual Conference on Neural Information Processing
Systems (NeurIPS19), pages 15762–15772.

Royo, V. R., Calandra, R., Stipanovic, D., and Tomlin, C. (2019).
Fast neural network verification via shadow prices.
CoRR, abs/1902.07247.

Ruan, W., Huang, X., and Kwiatkowska, M. (2018).
Reachability analysis of deep neural networks with provable guarantees.
In IJCAI2018, pages 2651–2659.

90.52%

References IX 175

Ruan, W., Wu, M., Sun, Y., Huang, X., Kroening, D., and Kwiatkowska, M.
(2019).
Global robustness evaluation of deep neural networks with provable guarantees for
the hamming distance.
In IJCAI2019, pages 5944–5952.

Singh, G., Gehr, T., Püschel, M., and Vechev, M. (2019a).
Boosting robustness certification of neural networks.
In ICLR19. OpenReview.net.

Singh, G., Gehr, T., Püschel, M., and Vechev, P. (2019b).
An abstract domain for certifying neural networks.
In ACM on Programming Languages, volume 3, pages 1–30. ACM Press.

90.52%

References X 176

Singh, G., Gehr, T., Mirman, M., Püschel, M., and Vechev, M. (2018).
Fast and effective robustness certification.
In NeurIPS18, pages 10802–10813. Curran Associates, Inc.

Sotoudeh, M. and Thakur, A. (2020).
Abstract neural networks.
arXiv preprint 2009.05660.

Sun, Y., Huang, X., Kroening, D., Sharp, J., Hill, M., and Ashmore, R. (2019).
Structural test coverage criteria for deep neural networks.
ACM Trans. Embed. Comput. Syst., 18(5s).

Sun, Y., Wu, M., Ruan, W., Huang, X., Kwiatkowska, M., and Kroening, D.
(2018).
Concolic testing for deep neural networks.
In ASE2018.

90.52%

References XI 177

Tjeng, V., Xiao, K., and Tedrake, R. (2019).
Evaluating robustness of neural networks with mixed integer programming.
In Proceedings of the 7th International Conference on Learning Representations
(ICLR19).

Wang, S., Pei, K., Whitehouse, J., Yang, J., and Jana, S. (2018a).
Efficient formal safety analysis of neural networks.
In NeurIPS18, pages 6367–6377. Curran Associates, Inc.

Wang, S., Pei, K., Whitehouse, J., Yang, J., and Jana, S. (2018b).
Formal security analysis of neural networks using symbolic intervals.
In Proceedings of the 27th USENIX Security Symposium (USENIX18).

Webb, S., Rainforth, T., Teh, Y. W., and Kumar, M. P. (2019).
A statistical approach to assessing neural network robustness.
In ICLR2019.

90.52%

References XII 178

Weng, T., Zhang, H., Chen, H., Song, Z., Hsieh, C., Boning, D., Dhillon, I., and
Daniel, L. (2018).
Towards fast computation of certified robustness for relu networks.
In Proceedings of the 35th International Conference on Machine Learning
(ICML18).

Weng, T.-W., Zhang, H., Chen, P.-Y., Yi, J., Su, D., Gao, Y., Hsieh, C.-J., and
Daniel, L. (2018).
Evaluating the Robustness of Neural Networks: An Extreme Value Theory
Approach.
In ICLR2018.

Wicker, M., Huang, X., and Kwiatkowska, M. (2018).
Feature-guided black-box safety testing of deep neural networks.
In TACAS2018, pages 408–426.

90.52%

References XIII 179

Wu, M., Wicker, M., Ruan, W., Huang, X., and Kwiatkowska, M. (2020).
A game-based approximate verification of deep neural networks with provable
guarantees.
Theoretical Computer Science, 807:298–329.
In memory of Maurice Nivat, a founding father of Theoretical Computer Science -
Part II.

Wu, Y. and Zhang, M. (2021).
Tightening robustness verification of convolutional neural networks with
fine-grained linear approximation.
In Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI21).
AAAI Press.

90.52%

References XIV 180

Yang, Y.-Y., Rashtchian, C., Zhang, H., Salakhutdinov, R. R., and Chaudhuri, K.
(2020).
A closer look at accuracy vs. robustness.
In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F., and Lin, H., editors,
Advances in Neural Information Processing Systems, volume 33, pages 8588–8601.
Curran Associates, Inc.

Zhang, H., Weng, T., Chen, P., Hsieh, C., and Daniel, L. (2018).
Efficient neural network robustness certification with general activation functions.
In Proceedings of the 31st Annual Conference on Neural Information Processing
Systems 2018 (NeurIPS18), pages 4944–4953.

90.52%

References XV 181

Zhao, X., Banks, A., Sharp, J., Robu, V., Flynn, D., Fisher, M., and Huang, X.
(2020).
A safety framework for critical systems utilising deep neural networks.
In SafeComp2020, pages 244–259.

Zhao, X., Huang, W., Banks, A., Cox, V., Flynn, D., Schewe, S., and Huang, X.
(2021).
Assessing the reliability of deep learning classifiers through robustness evaluation
and operational profiles.
In AISafety2021.

	Outline
	Introduction
	Falsification through Adversarial Attack
	Algorithms for Adversarial Attacks
	More Examples of Adversarial Attacks

	Rectification through Adversarial Training
	Adversarial Training
	Distributional Robustness
	Robustness vs Generalisation

	Robustness Verification
	Over-approximation Techniques
	Constraint Solving Techniques
	Abstraction and Refinement Techniques

	Verification in Practice
	Converging Bounds Methods
	Sampling-based Methods
	Software Testing Methods
	Reliability Assessment

	Conclusions and Future Directions

