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Deep Learning in Safety-Critical Systems 5
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Deep learning models are pervasively applied in many safety-critical systems!
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Deep Learning in Safety-Critical Systems 6

nature.

nature reviews
drug discovery s
o | For Authors.

Review Article | Published: 11 April 2019
Applications of machine learning in drug
dlSCOVCI'y and development Dermatologist-level classification of skin cancer with deep neural networks

Andre Esteva, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M. Swetter, Helen M. Blau & Sebastian Thrun

Article metrics for:

Jessica Vamathevan 5, Dominic Clark, Paul Czodrowski, lan Dunham, Edgardo Ferran,

» Drug Discovery and Development
» Automatic Medical Diagnosis
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Deep Learning in Safety-Critical Systems

|: Deep Learning for

SeIf—Drlvmg Cars

» Self-driving Cars

» Autonomous Vehicles
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Can We Trust its Decisions? 8

—

Researchers and Practitioners may have many concerns...

» How does a deep learning model make a decision?
» Does deep learning always make a correct decision?

» Under what circumstances a deep learning model will make a wrong decision?

Ultimate Question: Can we really trust the decisions made by deep learning
models, especially on safety-critical applications?
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Vulnerability to Adversarial Examples 9

—

Yet we cannot trust deep learning models, at least not now ...

“pig” (91%) noise (NOT random) “airliner” (99%)

P TT 27

+0.005 x

X £ X sign(V, J (8, x,y)) x + esign(V, J(8,x,y))

Simple approach to fool deep neural networks: Fast Gradient Sign Method
(FGSM) [Goodfellow et al., 2014]

Goodfellow et al (ICLR 2014). Explaining and harnessing adversarial examples.

UNIVERSITY Imperial Colk
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Vulnerability to Adversarial Examples

—

10

Such vulnerabilities are pervasive ...

NEWS

Home UK Worid Business Politics Tech Sclence Health  Family & Education

Technology

Al image recognition fooled by single
pixel change

(D 8 hours ago  Technology ¥ w © [ < share

MIFICIAL INTELLIGENCE

Resaarchar: We Should b Can & Maching Be Conscious? - Copyright Law Makes
Viored ThisComputer Astificial ntelligonce Bias
Thought a Turtle Was a G worse

Al Can Be Fooled With One
Misspelled Word
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Vulnerability to Adversarial Examples
—

In Deep Medical Systems...

11

Original Medical Image Adversarial Medical Image

Result: Benign Invisible Perturbation Result: Malignant

Adversarial Examples Against Medical Deep Learning Systems [Finlayson et al.,
2019, Finlayson et al., 2018]

Finlayson, Samuel G., et al. " Adversarial attacks on medical machine learning.” Science
363.6433 (2019): 1287-1289.
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Vulnerability to Adversarial Examples 12

—

In Autonomous Systems...

Changing
one pixel

DL Classification: Green Light DL Classification: Red Light

Min et al. (Theoretical Computer Science, 2019), A Game-Based Approximate Verification of
Deep Neural Networks with Provable Guarantees”
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Vulnerability to Adversarial Examples

—

In Medical Record Analysis...

Original Medical Record

13

Record with Two Mis-spelled Words

There is extremely dense fibrous tissue
in the upper outer quadrants of both
breasts. This lowers the sensitivity of
mammography. B.B. was placed in the
region of palpable abnormality and
demonstrates dense breast tissue in this
region. An occasional benign-appearing
calcification is present in both breasts.

There is extremely dense fibrous tissue
in the upper outer quadrants of both
breasts. This lowers the sensitivity of
mammography. B.B. was placed in the
region of palpable abnormality and
demonstrates dense breast tisue in this
region. An occasional benign-appearing
calcifcaton is present in both breasts.

Analysis Result: Positive

Analysis Result: Negative

Javid et al. (ACL 2018), Hotflip: White-box adversarial examples for text classification
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Adversarial Examples in Running Systems 14

—

Fool YOLOv2 Object Detector by a real picture ...
https://www.youtube.com/watch?v=MIbFvK2S9g8

Simen et al. (CVPR Workshops 2019), Fooling automated surveillance cameras: adversarial
patches to attack person detection
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Adversarial Examples in Running Systems 15

—

Fool an Object Classifier by a 3-D printed turtle ...
https://www.youtube.com/watch?v=XaQu7kk(BPc

Fooling Image
Recognition

Anish et al. (ICML 2018), Synthesizing Robust Adversarial Examples
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Research Dealing with Adversarial Robustness 16

—

» Falsification (adversarial attacks, testing, etc.): How to find the weak spots of
deep learning models
— Evaluating adversarial robustness

» Rectification (adversarial defense): How to defend adversarial attacks
— Improving the robustness w.r.t. adversarial attacks

» Verification: How to verify if a given model satisfies robustness properties for
certain input constraints
— Providing robustness guarantees if no counter-examples can be found

EXETER I ial Coll
EXETER @ [IvERpoOL (el Cotege—



What is adversarial examples

17

Adversarial

Adversarial

DL model’s
‘ Decision Boundary
Decision Boundary by/ Example .
Human Perception /

DL model: classifies o and o differently
Human: should remain the same

EXETER B LvirrooL
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An example of Defense 18

Adversarial

.
‘<
s
/’ \DL model’s Decision Boundary
e after Adversarial Training

O Adversarial

Example

_____

Decision Boundary
Adversarial

Example .

Decision Boundary by ’,’/
Human Perception
-
/

Injecting adversarial examples into training so the resulting DL model is resistant to
adversarial attacks
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An example of Verification

—

Do not find adversarial examples:
assure no adversarial examples with
guarantee --- Robust or Safe

A Y

DL model’s
Decision Boundary

19

Find adversarial examples:
assure the existence of adversarial
examples —— Not Robust or Unsafe

-

Decision Boundary by
Human Perception

Example of (Robustness) Verification: verify if a certain input area can exclude

adversarial examples with guarantees
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The Aim of the Tutorial 20
—

This tutorial aims to
cover a few
well-established works
from three aspects:

3000 A
2000 A

» Falsification via
adversarial attacks

1000 4

Cumulative Number of
Adversarial Example Papers

» Rectification via '

. . o e o ot
adversarial training r b L L
Year
» Verification Figure: nttps://nicholas.carlini.com/writing/2019/

all-adversarial-example-papers.html

Comprehensive one: A Survey of Safety and Trustworthiness of Deep Neural Networks:
Verification, Testing, Adversarial Attack and Defence, and Interpretability, Computer Science
Review. 37 (2020): 100270.
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Falsification through Adversarial Attack




What is Adversarial Example 23
—

\
DL’s
» Input: DL model f Decision
e . Boundary
A correctly-classified, genuine example «
» Aim: find a perturbed example o/, such that
» f produces a different decision on o’ @' / .
» Human will produce a same decision on « and / .
/ Human
& Decision .
Bmm(lal'yl N

“pig” (91%) noise (NOT random) “airliner” (99%)

il

+0.005 x

UniveRsiTy Imperial Coll
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What is Adversarial Example 24
—

DL’s
Problem: Given a DL model f and genuine example «, ggﬁlﬁiﬂﬂy

find o such that
> f(a') # fla) A
> DHuman(a/) = DHuman(a)
Human

Decision
Boun(laryl

How to approximate human decision?

» Use certain distance metric to assure o’ and « are small enough
How to search o’ such that f(a/) # f(a)?

» Design certain objective functions for minimization
What kind of information is required from DL model f7

» White-box v.s. Black-box 8
EXETER ¥ [IVERPOOL [mRerial College —
o EXE




Categories of Adversarial Attacks 25

—

Targeted Attacks v.s. Un-targeted Attacks

> With a targeted perturbation, the attacker is able to control the resulting
misclassification label.

> With an un-targeted perturbation, the attacker can enable the misclassification
but cannot control its resulting misclassification label.

EXETER I ial Coll
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Categories of Adversarial Attacks 26

—

Distance metric to measure o and a:

» L,-norm distance

- Ly-norm based attacks (e.g., p = 0,2, 00)
» Total variation of pixel displacement

- Spatial-transformed adversarial attacks

» Metrics for measuring similarity of sentences or text
- Attacks on NLP models

EXETER I ial Coll
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Categories of Adversarial Attacks 27

—

The information is required from DL model f (white-box or black-box):

» Hard labels only
» Confidence values
» Model's parameters and structure

ial College e
o
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Categories of Adversarial Attacks 28

—

The type of the model f:
» Feed-forward neural networks
» Recurrent neural networks
» Graph neural networks
» Other models

EXETER I ial Coll
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Categories of Adversarial Attacks 29

—

Local adversarial attack v.s. Universal adversarial attack

» Local adversarial attack:
- find specific perturbation for each input

» Universal adversarial attack:
- find a perturbation that can fool a set of inputs

EXETER I ial Coll
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Falsification through Adversarial Attack

Algorithms for Adversarial Attacks




Limited-Memory BFGS Attack (L-BFGS) 32

One of earliest adversarial attack: optimization based formulation with Lo-norm metric
» Model f:R** — {1...sx} with sk labels
» € R =10,1]* is an input

» t € {l...sx} is a target misclassification label
Find the adversarial perturbation r via

min ||r||]2  assure human-decision unchanged
s.t. argmax; fj(z +r) =1t assure misclassification (1)
x+1r € R° assure perturbed image feasible

- Solved by L-BFGS, Establish this direction

Christian et al (ICLR 2014). Intriguing properties of neural networks

ANUNIVERSITY OF I ial Coll —
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FGSM Attack 33
_ast Gradient Sign Method is able to find adversarial perturbations—with-afixed————

Loo-norm constraint very efficiently
» 0: the model parameters,
> x,y: the input and the label
» J(6,z,y): the loss function

Find adversarial perturbation r by linearizing the loss function around the current value

of 0,
r=esign(VyJ(0,z,y)) (2)

- A one-step modification to all pixel values to increase the loss function with a
Lo.-norm constraint ¢

Goodfellow et al (ICLR 2015). Explaining and harnessing adversarial examples

ANVRIVERSITY OF I ial Coll —
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C&W Attack 34
_ar ini & Wagner Attack: find adversarial examples with very-smal-distertion—work———

on Lg, Ly and Lo,-norm
> x is an input,
» 1 is adversarial perturbation
> F'is a designed surrogate function such as x + r is able to fool the neural network
when it is negative

min (r) = ||r||, +¢- F(z+71) (3)

- The optimizer Adam was directly adopt to solve this optimization problem
- The key to achieve strong attack is a careful design of surrogate function

Nicholas et al (IEEE S&P 2017). Towards evaluating the robustness of neural networks

EXETER I ial Coll
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700 Attack 35

White-box setting: full access to the target model
Black-box setting: with limited knowledge on the model

ZOO Attack: Model F(z) € [0,1]¥ (confidence values)
» min, ||z — 20|32 + ¢ f(z,1)
where = € [0, 1]” and
[z, t) = max{—k, maxixlogF (z)]; — [logF ()]}
» Random coordinate gradient descent via estimated gradients by Symmetric
Difference Quotient:

9g(x) _ g(x + he) — g(x — he)
or 2h
- Nearly similar performance to white-box attack
- Key difference: only access confidence values — numerically estimate the gradient

with small h

Chen et al (ACM Workshop on Al&Security 2017). Zoo: Zeroth order optimization based
black-box attacks to deep neural networks without training substitute models

ANVRIVERSITY 0F I ial Coll —
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Spatially Transformed Adversarial Examples 36

What else can we modify? Perturb the locations of pixels

Adversarial image X,

Benign image x

i @
- (Vi Via)
Bilinear
Interpolation

Estimated flow f 1
stimated flow

: Flow calculation

Au®,av0) (w®,v®) = (usjv + Au“),v;:‘d;v + Av“)J
—_— advs » A
(u®,v®)

f*=argming Logu(z, f) + TLf10w(f) minimize flow
Ladv(z, ) = max(max;zt g(Xadv )i — §(Xadv)t, k) surrogate function

pizels

Measure the pixel displacement: Lfiow(f) = > 3 V][Au® — Au@ ]2 + [[Av®) — Av(@[|2
n=1 qeN(p)

Perform spatial transformation: xgv = > xD(1 — [u —u@)(1 = [p@ — D)

gEN (u(®) v(D)
EXETER B LivERPOSL mpeia College —




Spatially Transformed Adversarial Examples 37

Flow visualization on MNIST: digit "0" is misclassified as " 2"

enign

Adversarial

» Instead of perturbing the pixel values, adversarial attacks can be achieved by
spatial transformation

» Different metric is required to measure pixel's spatial displacement

Chaowei et al (ICLR 2018). Spatially transformed adversarial examples
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Universal Attack via Combined Perturbation 38

—

How about perturbing spatial location and pixel values simultaneously on an image set?

XTrain

’

'I Conv2d ResnetBlocks iii I
I
H []
I
|
'
| |
. T =
T
|
H 1
1
|
H ]
'
T
! 1
v

N
\

Scale

e Target
\_Iu

| Scale |

Generator
- Unified solution: L,-norm, spatial-transformed, or both
- Universal: a single perturbation fools a set of input images
- Strong transferability: workable across unseen models in a black-box setting

e B USIVERs Ty 0F Imnerial Coll
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Universal Attack via Combmed Perturbatlon 39

horse ship truck

cat cat cat bird cat cat cat cat cat cat

Yanghao et al (ICDM 2020). Generalizing Universal Adversarial Attacks Beyond Additive
Perturbations

s o B USIVERs Ty 0F Imnerial Coll
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Falsification through Adversarial Attack

More Examples of Adversarial Attacks




More Attacks: on NLP models 42

Adversarial attack on reading comprehension system

Article: Super Bowl 50

Paragraph: “Peyton Manning became the first quarter-
back ever to lead two different teams to multiple Super
Bowls. He is also the oldest guarterback ever to play
in a Super Bowl at age 39. The past record was held
by John Elway, who led the Broncos to victory in Super
Bowl XXXIII at age 38 and is currently Denver’s Execu-
tive Vice President of Football Operations and General
Manager. Quarterback Jeff Dean had jersey number 37
in Champ Bowl XXXIV.”

Question: “What is the name of the quarterback who
was 38 in Super Bowl XXXII?"

Original Prediction: John Elway

Prediction under adversary: Jeff Dean

- Adding distracting sentences (in blue)
- Prediction changes from correct one (green) to incorrect (red)

Robin et al (EMNLP 2017). Adversarial Examples for Evaluating Reading Comprehension
Systems

“ R I ial Coll
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More Attacks: on NLP models 43
—

Edit adversarial attack on sentiment analysis system:

Task: Sentiment Analysis. Classifier: Amazon AWS. Original label: 100% Negative. Adversarial label: 89% Positive.

Text: | watched this movie recently mainly because | am a Huge fan of Jodie Foster's. | saw this movie was made right

between her 2 Oscar award winning performances, so my expectations were fairly high. Unferunately UnfOrtunately, |
thought the movie was terrible terrib1e and I'm still left wondering how she was ever persuaded to make this movie. The

script is really weak wea k.

- After editing words (red), prediction changes from 100% of Negative to 89% of
Positive.

Li et al (DNSS 2020). TextBugger: Generating Adversarial Text Against Real-world
Applications

ANUNIVERSITY 0 uN I ial Coll —
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More Attacks: NLP models 44
—

Adversarial attack on BERT-based sentiment classifier:

Movie Review (Positive (POS) <> Negative (NEG))

Original (Label: NEG) The characters, cast in impossibly contrived situations, are totally estranged from reality.

Attack (Label: POS) The characters, cast in impossibly engineered cir , are fully estranged from reality.

Original (Label: POS) Tt cuts to the knot of what it actually means to face your scares, and to ride the overwhelming metaphorical
wave that life wherever it takes you.

Attack (Label: NEG) It cuts to the core of what it actually means to face your fears, and to ride the big metaphorical wave that

life wherever it takes you.

- Changing a few words completely fools the BERT model

Ji et al (AAAI 2020). Is BERT really robust? a strong baseline for natural language attack on
text classification and entailment

EXETER I ial Coll
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More Attacks: 3D Point Cloud Models 45
I—

airplane v table v/

'.7 * T F4)
PN++ (SSG): PN: PN-++ (MSG) PN: PN++ (SSG): DGCNN:
sofa % stand % sofa % bench % sofa % sofa %

Adversarial attacks on multiple 3D Point Cloud models by slightly perturbing the
locations of the points

Hamdi et al (ECCV 2020). AdvPC: Transferable Adversarial Perturbations on 3D Point Clouds

ANUNIVERSITY 0 I ial Coll —
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More Attacks: Audio Recognition Systems 46

\ "it was the
2O best of times,
20 = twas the
worst of times"
Correct
Wrong
"itis a truth
universally
x 0.001 == acknowledged
that a single"

Imperceptible adversarial examples can be generated to fool Audio Recognition
Systems including Google Speech, Bing Speech, IBM Speech APls, etc

Hadi et al (DNSS 2020). Practical Hidden Voice Attacks against Speech and Speaker
Recognition Systems

ANUNIVERSITY OF I ial Coll —
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Existing Tools for Adversarial Attacks 47
—

» Adversarial Robustness Toolbox (ART):
https://github.com/Trusted-Al/adversarial-robustness-toolbox

» Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine
learning models in PyTorch, TensorFlow, and JAX
https://github.com/bethgelab/foolbox

» CleverHans: https://github.com/tensorflow/cleverhans

» Advbox Family: https://github.com/advboxes/AdvBox

ANVRIVERSITY OF I ial Coll —
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Existing Surveys for Adversarial Attacks 48

» Huang, Xiaowei, et al. " A survey of safety and trustworthiness of deep neural
networks: Verification, testing, adversarial attack and defence, and
interpretability.” Computer Science Review 37 (2020): 100270.

» Hao-Chen, Han Xu Yao Ma, et al. "Adversarial attacks and defenses in images,
graphs and text: A review." International Journal of Automation and Computing
17.2 (2020): 151-178.

» Akhtar, Naveed, and Ajmal Mian. " Threat of adversarial attacks on deep learning
in computer vision: A survey.” |IEEE Access 6 (2018): 14410-14430.

EXETER I ial Coll
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What’s the next? 49

—

» Adversarial attacks are important
» Understanding the limitation, or potential safety risks of deep learning models
» Providing a way to practically evaluate robustness performance of deep learning
models under adversarial environments

P [ssues:
- It cannot provide robustness guarantees in terms of excluding adversarial examples

- Attacks alone cannot directly improve the robustness

» How can we improve its robustness? — Part-2: Rectification

» How to assess the adversarial robustness with provable guarantees — Part-3:
Verification

ANVRIVERSITY OF I ial Coll —
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Rectification through Adversarial Training




Rectification via Adversarial Defence 52

- g !ast growing research area:

» Input denoising
o e.g., Guo et al (2017); Buckman et al (2018); Liao et al (2018); Samangouei et

al (2018); Bai et al (2019); etc.

» Randomised smoothing
o e.g., Lecuyer et al (2019); Li et al (2019); Cohen et al (2019); Salman et al
(2019); Levine & Feizi (2020); Lee et al (2019); Teng et al (2020); Zhang et al
(2020); etc.

» Adversarial training

» Training dataset augmentation
o e.g., Goodfellow et al (2014); Shaham et al (2018); Sabour et al (2015); Kurakin
et al (2016); Papernot et al (2016); Dezfooli et al (2016); etc.

» Robust optimisation
© e.g., Goodfellow et al (2015); Madry et al (2017); Zhang et al (2019); Miyato et al
(2018); Wang et al (2019); etc.

ANVRIVERSITY OF I ial Coll —
EXETER B LiviRpOOL Imeeal Coteoe




Attack vs. Defence: An Endless Game 53
—

Adversarial attacks cause a Many defenses have been tried and
catastrophic reduction in ML capability failed to generalize to new attacks
Attack Defense
Top ImageNet
100 finishers Approximation attacks
% (Athalye et al, 2018) \ GANs
(Samangouei et al., 2018)
80 "
. Detection
g ™ / (Ma etal, 2018)
= 60 Optimization attacks
g - (Carlini, 2017)
3 \ Distillation
g / (Papemot et al., 2016)
20 Multi-stage attacks
10 Adversarial attacks (Kurakin, 2016)
0 L] [ ] L \ Adversarial training
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 (Goodfellow et al., 2015)
Challenge Year Single Step attacks /
(Goodfellow, 2014)
ImageNet Classification Attack / Defense Cycle

@ DARPA's GARD programme
G
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Adversarial Training Survives

—

o4

» Athalye et al (ICML 2018). Obfuscated Gradients Give a False Sense of Security.
» Successful attack of 7 out of 9 defense in ICLR 2018

» The only survival is adversarial training

Defense Dataset Distance Accuracy
Buckman et al. (2018) CIFAR 0.031 (Y) 0%*
Ma et al. (2018) CIFAR 0.031 (£oo) 5%

Guo et al. (2018) ImageNet  0.005 (£2) 0%+
Dhillon et al. (2018) CIFAR 0.031 (Ys0) 0%

Xie et al. (2018) ImageNet  0.031 (£) 0%+
Song et al. (2018) CIFAR 0.031 (o) 9%
Samangouei et al. MNIST 0.005 (¢2)  eininkime 0%
(2()1 8) llyas et al 2019
Madry et al. (2018) CIFAR 0.031 ({c) 47T%

Na et al. (2018) CIFAR 0.015 ({) 15%

ANUNIVERSITY 0 I ial Coll —
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Rectification through Adversarial Training

Adversarial Training




Adversarial Training via Robust Optimisation 57

—

» Madry et al (ICLR 2018). Towards Deep Learning Models Resistant to Adversarial
Attacks.

» Idea: solving a minimax optimisation problem through SGD training

mein{E(%y)Np [agleagi L(l‘,, Y; 9)]}7

» (xz,y) - clean training data samples = € R™ with labels y € [k] drawn from the
dataset D

» L(-) - loss function with model parameter § € R™

» 1’ € R™ - perturbed samples in a feasible region
S, = {z:2¢€ B(x,e)N[-1.0,1.0]"}

> eg., B(z,e) £ {z: ||z — 2|, < €} - the £,-ball at center = with radius e.

ANUNIVERSITY 0 I ial Coll —
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Adversarial Attacks as Inner Maximisation 58

—

» Outer minimisation can be simulated by SGD training

N

.1 .
mem{ﬁ ;[%as)i L(z',y;0)]},

» How to compute gradient of a maximisation?
» Danskin's Theorem

Vomax L(z',y;0) = VoL(z", y;0)

where z* = argmax L(z’, y; 0)
» Inner maximisation max,/cg, L(z',y;0) can be simulated by finding the
worst-case adversarial attacks:
» Fast Gradient Method (FGM)
» Projected Gradient Method (PGM):
S

ANUNIVERSITY 0 I ial Coll —
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Fast Gradient Method (FGM) 59
—

» Goodfellow et al (2014). Explaining and harnessing adversarial examples.
arXiv:1412.6572.

» ldea: Projecting perturbation onto the direction of gradient ascent of loss function

» Adversarial examples:

r* = arg max (z' =, VoL(z,y;0))

» For {s-norm, FGM recovers the fast gradient sign method (FGSM) where each
data point (z,y) is perturbed by the e-normalised sign vector of the loss’s gradient

z" =z + e sgn(VoL(z,y;0))
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Projected Gradient Method (PGM) 60
—

» Kurakin et al (2016). Adversarial machine learning at scale. arXiv:1611.01236.

» Idea: lterative gradient ascent to generate strongest adversarial examples, followed
by projection back to the feasible region

» Updating rule:
2 =TI, (2" + a - sgn(V. L(z',y;0))),

where IIg () projects the inputs onto the region S,.
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AT Variants 61
> FreeAT:
» Shafahi et al (NeurlPS 2019). Adversarial training for free!
> https://github.com/ashafahi/free_adv_train/
» YOPO:
» Zhang et al (NeurlPS 2019). You only propagate once: Accelerating adversarial
training via maximal principle.
> https://github.com/al1600012888/Y0P0O-You-Only-Propagate-Once
> FreelB:
» Zhu et al (ICLR 2020). FreelLB: enhanced adversarial training for language

understanding.
> https://github.com/zhuchen03/FreelLB

» FastAT

» Wong et al (ICLR 2020). Fast is better than free: Revisiting adversarial training.
> https://github.com/locuslab/fast_adversarial
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Pros and Cons of Adversarial Training 62

—

» Pros:

» Empirical robustness (although no robust certificate)
» Without affecting inference time (although increasing the training time)
» Integratable to different threat models

» Cons:

» Sacrifice accuracy to robustness

» Dedicated to supervised learning

» Rely very much on identifying local adversarial examples for specific threat models
» No guarantees of generalisation performance
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Rethinking Adversarial Training 63

—

The min-max optimisation problem
. / X
min{E ()~ plmax Lz, y; )]},
where robustness is the goal.

How shall we deal with the following?
» Robustness vs Accuracy
» Supervised vs Semi-supervised Learning
» Local vs Global Information

» Robustness vs Generalisation
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Rectification through Adversarial Training

Distributional Robustness
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Distributionally Robust Optimisation 66
—

» Sinha et al (ICLR 2018). Certifying some distributional robustness with principled
adversarial training.

» Idea: Considering a Lagrangian penalty formulation of perturbing the underlying
data distribution in a Wasserstein ball

minsup B )p[L(z,y;0) — YW (P, P)]
0 pep
st. We(P,Py)= inf Epyc(Z,7)
MeI(P,Po)

where P, is data-generating distribution, P is the perturbed distribution from Fy
such that P = {P : W.(P, Py) < p}, We(-,+) is Wasserstein metric, ¢(Z, Z') is
the transport cost from Z to Z’, and M is certain measure.
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Robustness vs Accuracy

—

67

» Zhang et al (ICML 2019). Theoretically principled trade-off between robustness
and accuracy.

» Idea: optimizing a regularised surrogate loss

min{E y)~p[L(z,y;0) + e KL(f ()] f(2")]},

» empirical loss minimisation: maximise the natural accuracy
» regularization term: push the decision boundary away from the data, so as to
improve adversarial robustness
1.0

37. 02/

I ial College
EXETER @ LVERPOGL [mheil Coleos



Supervised vs Semi-supervised Learning 68

—

» Miyato et al (TPAMI 2018). Virtual adversarial training: a regularisation method
for supervised and semi-supervised learning.

» Idea: regularise on local distributional smoothness (LDS)

» Virtual adversarial loss with “virtual” label: The distance of the conditional label
distributions around each input data point against local perturbation

mein E(x,y)NDLL(‘r: Y; 0) + O‘EI*NDZUD“Z LDS(x*v 6)

st LDS(2;0) £ D(p(-|2.0)|p(- + rvav: )

Tvadv = arg max D(p(-|xz.; 0)||p(-|zs + 1))
Irlla<e
» Virtual adversarial direction: A direction of the adversarial perturbation that alter
the output distribution at most.
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Local vs Global Information 69

—

» Zhang and Wang (NeurlPS 2019). Defense against adversarial attacks using
feature scattering-based adversarial training.

» Motivation: Vanilla adversarial training generates adversarial examples one by one
separately, without considering inter-sample relationship

» |dea: Generating adversarial examples by perturbing the local neighborhood
structure in an unsupervised fashion using feature scattering, and then performing
model training with the generated adversarial examples

» Feature scattering: Maximizing the feature matching distance between the clean
samples and the perturbed samples in the latent space.

» Drawbacks

» Feature scattering only considers the inter-sample relationship within the batch
» Biased towards the decision boundary, which potentially corrupts the structure of the
original data distribution

Question: How could global data manifold information play a role?
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Exploiting Local & Global Information 70

» Robust optimization with f-divergence regularization

min AR g, gy s [1(Fo(2°"), )] + Dy (P511Q0)}
st. By = arg max[D;(F[|Qo)]

where Dy(-) is the f-divergence measure of two distributions, @y is the underlying
distribution of the latent features of clean samples, and Py is the underlying
distribution of the latent features of adversarial perturbations.

» Feasible region for the latent distribution
P={P: fo(a') ~ P subjectto Vx~ Qo,2" € B(x,e)}

is induced by the set of perturbed examples through fy(-).
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Adversarial Training with Latent Distribution (ATLD) 71
—

» Idea: (1) Leverage a discriminator network for estimating the f-divergence
between two distributions; (2) Generate Latent Manifold Adversarial Examples
(LMAEs) to ‘deceive’ the latent manifold rather than fool the classifier

N N
min{ > L<x?dz, i 0) +sup 3_[log Diy (Jp(xt™)) + (1 ~ g Diy (fo(2:)
s LY
+ min[l(DHE (fo(@1)), 1) + UDKE (fo @), )] }
LE¢
st af® —arg_ max (log Diy (fo(a})) + (1 — log Dfy (fo(:)))

x,€B(x4,€)

where Dy denotes the discriminator network with parameter W, ng and DII/I}C
are the different dimensions of the output of the discriminator_
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ATLD as an Adversarial Game 72
—

RadiE s

m@l}@'}#ﬁ® d
\‘& N

= @E

B manifold label

aL" —

Adversarial game between a discriminator and a classifier:

» Discriminator is learned to differentiate globally the latent distributions of the
natural data and the perturbed counterpart

» Classifier is trained to recognize accurately the perturbed examples as well as
enforcing the invariance between the two latent distributions
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ATLD: Data Manifold and Decision Boundary 73

(a) Original Data

(e) Original (f) PGD-AT (g) Feature Scattering (h) Ours

Qian et al (2021). Improving model robustness with latent distribution locally and globally.
arXiv:2107.04401.
|
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Rectification through Adversarial Training

Robustness vs Generalisation

EXETER I ial Coll
EXETER @ [IvERpoOL (el Cotege —



Rectification through Adversarial Training

Robustness vs Generalisation




Generalisable Robustness via Regularisation 76

—

Standard regularisation techniques work for adversarial training to enhance
generalisation performance

» Dropout
> Weight decay
» Data augmentation

» Early stopping

Q: Are there any weight regularisation techniques for generalisation that could be
particularly suitable for adversarial training?

» Spectral normalisation
» Lipschitz regularisation

> Weight correction regularisation
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Spectral Normalisation 77

—

» Miyato et al (ICLR 2018). Spectral normalization for generative adversarial
networks.
» Spectral normalisation: Normalising weight matrix by spectral norm, i.e.,
Wqn = %W) where

o(W) £ max |[Wx||
lIx[l2<1

» Farnia et al (ICLR 2019). Generalizable adversarial training via spectral
normalization.

FGM training PGM training WRM training
1.0 1.0 1.0
0.8 08 0.8
3
806 o 0.6 O 0.6
] ~——————— b
H ! N e
0.4 W i 0.4 0.4
@ valid
0.2 N7~ train (SN) 0.2 0.2
Q©- valid (SN)
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0 20000 40000 60000 80000 0 20000 40000 60000 80000 0 20000 40000 60000 """
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Lipschitz Regularisation 78

Lipschitz constraints under fo-norm are useful for provable adversarial robustness
bounds, stable training, and Wasserstein distance estimation.
» Cisse et al (ICML 2017). Parseval networks: Improving robustness to adversarial
examples.

» |dea: to maintain weight matrices of linear and convolutional layers to be
(approximately) Parseval tight frames (extensions of orthogonal matrices to
non-square matrices).

» Li et al (NeurlPS 2019). Preventing gradient attenuation in lipschitz constrained
convolutional networks.

» |dea: to introduce convolutional gradient norm preserving networks with an efficient

parameterisation of orthogonal convolutions to avoid the issues of loose bounds on
the Lipschitz constant and computational intractability
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Weight Correlation Regularisation 79

—

» Weight Correlation: Given weight matrix W; € RNi-1XNi of the [-th layer, the
average weight correlation is defined as

N T
1 (WiWi,
le = : ’
Wi = N1 2 Twellwolh
i#£]

where w;; and w; ; are i-th and j-th column of W, corresponding to the i-th
and j-th neuron at [-th layer, respectively. Intuitively, p(W;) is the average cosine
similarity between weight vectors of any two neurons at the [-th layer.
> Weight Correlation Regularisation
P |dea: Regularisation to constrain the average weight correlation between any two
neurons so as to enhance generalisation performance

Jin et al (NeurlPS 2020). How does Weight Correlation Affect the Generalisation Ability of
Deep Neural Networks.
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Robust Optimisation vs Regularisation 80

—

» Adversarial training vs norm regularisation

» Roth et al (NeurlPS 2020). Adversarial training is a form of data-dependent
operator norm regularization.

» Insight: £,-norm constrained projected gradient ascent based adversarial training
with an £;-norm loss on the logits of clean and perturbed inputs is equivalent to
data-dependent (p, g) operator norm regularization

» Distributionally robust optimisation (DRO) vs regularisation
» Husain (NeurlPS 2020). Distributional robustness with IPMs and links to

regularization and GANs.

» Insight: DRO under any choice of Integral Probability Metrics (IPM) corresponds to
a family of regularization penalties, which recover and improve upon existing results
in the setting of Maximum Mean Discrepancy (MMD) and Wasserstein distances.
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Robust Generalisation

—

81

» Generalisation error:

GE 2 [I(fo(5),Y) — I(fo(Sa), Ya)l

where 1(f5(S), Y) 2 E(y gy (s [[(Fo(), )] and

1(f9(Sq),Yy) 2 ﬁ_z(iﬁd:yd €S, (fa(..%’d),yd) with Sd,l./d being the tra.ining data
and the corresponding labels, respectively, and S, Y being the underlying data and
label distributions, respectively.

» Robust generalisation error:

RGE 2 [I(f5(S*™),Y) — I(fo(S3™), Ya)|

where S;d” and S%% are the set of adversarial examples for the training set and
its underlying distribution.
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Robust Generalisation is Hard 82

—

» Schmidt et al (NeurlPS 2018). Adversarially robust generalization requires more
data.
» Sample complexity of robust learning >> sample complexity of “standard” learning
— the gap holds irrespective of training algorithms or models
» Yin et al (ICML 2019). Rademacher complexity for adversarially robust
generalization.
» Adversarial Rademacher complexity is larger than its natural counterpart
» |t has an unavoidable dimension dependence, unless the weight vector has bounded
{1 norm
» Raghunathan et al (2019). Adversarial training can hurt generalization.
» Adversarial training hurts generalisation even when the optimal predictor has both
optimal standard and robust accuracy
Question: Why is robust generalisation hard to achieve and how to improve it?
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Robust Generalisation Gap 83

—

Given the training set Sy = {x;}"; drawn from a distribution .S with K classes, and
the corresponding adversarial example set Sadv = {xad” 1, drawn from the underlying
distribution S99, if the loss function I(-) of DNN fois k- L|psch|tz, then for any § > 0,
with the probability at least 1 — §

2K In2+ 21
RGE < GE + © ZZHCZ advy _ do(z, C3)|I2 + M\/ nn ng
LIJEN

where dg(x%) = fo(z") — fo(x)
dy(z,Ci) = B[ fg(2"") — fo(2)|z € Ci]
with N; being the set of index of training data for class ¢, C; the set of it" class data

of the whole set and z is data sampled from C; with corresponding adversarial example
2% M the upper bound of loss of the whole data manifold S. -
/Wjﬁk gLI\/ERPOOL Imperial College




Shift Consistency Regularisation

—

84

Adversarial Training with Shift Consistency Regularisation (AT-SCR)

n K
: A =
min {Z[L( adv 42 0)] + - Z Z SlC(ZL’?dU,J}l,NZ’)},
=1 =1 jEN;
adv

s.t. @

= arg max L(x},y;;0).

IiESIZ

where
SiC(x2%, 2, N;) 2 ||dg(29%) — dy(1, Ny) |3,

where dy(z;, N;) is the average feature shifts over training data of class i, i.e.,

dg(z1, N, > (falaf™) = fola))-

2| lEN;
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AT-SCR 85

~ venng 0w
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(b) FS w/ adversarial data (c) FS-SCR w/ clean data  (d) FS-SCR w/ adversarial data

! \e -
" 2 N - " .
- . \ 0
(a) FS training shifts (b) FS test shifts (c) FS-SCR training shifts (d) FS-SCR test shifts

Zhang et al (ICML 2021). Towards Better Robust Generalization with Shift Consistency

Regularization.
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Concluding Remarks 86

—

» Distributional robustness is more preferable for adversarial training

» trade-off between robustness and accuracy
» both supervised and semi-supervised learning
» both local and global information

» Robustness vs generalisation
» Regularisation techniques could benefit both robustness and generalisation

simultaneously
» Robust generalisation requires rethinking latent dispersion of clean and adversarial

examples
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Robustness Verification
Over-approximation Techniques
Constraint Solving Techniques
Abstraction and Refinement Techniques
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Verification .

—

» formal guarantees

Program fails Counter-
—_—
Verification example

Procedure

Property holds
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Verification
—

» formal guarantees

fails Counter-

N7\
LUORE
el

‘Q‘X" NVt
AV

example

Verification

Procedure
" holds

NS

Property

Imperial College o
London

EXETER B LvirrooL




Neural Network Notation

—

Hidden layers

89

Input layer Output layer
zO a,:i—l zi wi :Ek: — N(mO)
‘%:V" ‘V‘V’. Output 1
»«‘»« _
S e
" \\ Output s,

KR




Neural Network Notation

—

Input layer Hidden layers

linear transformation

wi

» 2! are preactivations, z' = Wizi~! 4 b’

89

Output layer

zF = N(z°)

Output 1




Neural Network Notation 89

—

Input layer Hidden layers Output layer
i ) K

T x’ 2z T z* = N(z°)

Output 1

non-linear activation

» 2! are preactivations, z' = Wizi~! 4 b’

» ! are postactivations, ' = ReLU(z?) = max(0, z*)
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Properties to Verify 90

Generic input-output relation

Vel e T N e O

» |ocal robustness

» reachability

> safety
» semantic perturbations
» rotation, translation, brightness and contrast, etc. R ioeril Collece
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Local Robustness Verification 91

—

Given a network N, an input & € R*°, a perturbation radius r and
a distance metric || - ||,,, decide whether

argmax N (z°); = argmax N (&),
(2 (2

for all z° such that ||z° — ||, <.

Here we focus on the infinity norm ||z||s = max; |x;|.
=z e [lo,uo]' where l? = &; —r and U? P
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Challenges in Verification of Neural Networks 92

—

Verification is a difficult problem

» exact reachability is NP-complete for ReLU networks

Unsafe states

Iayer 1 V |ayer 2 @ layer & %‘;O{,\fé

Input set Output reachable set
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Challenges in Verification of Neural Networks 92

—

Verification is a difficult problem

» exact reachability is NP-complete for ReLU networks

Unsafe states

layer k ; % ]
—_— 1 4

Input set Output reachable set

layer 1

» approximate methods offer better scalability
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State-of-the-art Verification Approaches 93
—

» (Sound and) incomplete methods for general activations
» Over-approximation

1. Abstract Interpretation
2. Estimation of output bounds

» Global optimisation

» (Sound and) complete methods for piecewise-linear activations
» Constraint solving approaches
> SMT
> MILP

» Abstraction and iterative refinement
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Robustness Verification
Over-approximation Techniques

ANVRIVERSITY OF I ial Coll —
EXETER B LiviRpOOL Imeeal Colese




Abstract Interpretation
—

https://github.com/eth-sri/eran

A shape that abstracts all
possible perturbations

Input

Yy |

Convolution

95

Guaranteed
to classify to label 8

A shape that abstracts
all possible outputs

L
/\

Not guaranteed
to classify to label 8

Gehr et al (S&P 2018). Al?: Safety and Robustness Certification of Neural Networks with Abstract Interpretation.

Singh et al (NeurlPS 2018). Fast and Effective Robustness Certification.
Singh et al (POPL 2019). An Abstract Domain for Certifying Neural Networks.
Singh et al (ICLR 2019). Boosting Robustness Certification Of Neural Networks.
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Bounds Computation 96

—

As the core of an over-approximation approach or as a pre-processing step.

Symbolic
Interval Interval Linear Non-linear
Propagation Propagation Optimisation Optimisation
fast slow
loose tight
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Bounds Computation 96

—

As the core of an over-approximation approach or as a pre-processing step.

Symbolic
Interval Interval Linear Non-linear
Propagation Propagation Optimisation Optimisation
fast slow
loose tight

Interval propagation
» propagate intervals layer by layer

. Actual convex hull
. 71 Transformation of
N K L ! the previous bounds
> > > Interval bounds
| | | L
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Bounds Computation 96

—

As the core of an over-approximation approach or as a pre-processing step.

Symbolic
Interval Interval Linear Non-linear
Propagation Propagation Optimisation Optimisation
fast slow
loose tight

Linear optimisation

» linearly relax non-linearities and solve the optimisation problems

min w; max a:;
subject to ... subject to ...
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Bounds Computation 96

—

As the core of an over-approximation approach or as a pre-processing step.

Symbolic
Interval Interval Linear Non-linear
Propagation Propagation Optimisation Optimisation
fast slow
loose tight

Symbolic interval propagation

» compute symbolic linear equations from the input variables
I 0 i 0
eq;(x”) < x* < uegq,;(x")

» concrete bounds are obtained by substituting the bounds for a°.
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Linear Relaxation of Unstable RelLU
—

ReLU(z),

A

97
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Linear Relaxation of Unstable RelLU

Ehlers (ATVA 2017). Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks.
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97

Linear Relaxation of Unstable RelLU

RelLU(z) ,
X‘O
-
> $ >
T l u x
. o _u _ —lu
Upper bound equation 1, , = a-x + b, where a = -%; and b = =
_ 0, ifu<-l
Lower bound equation A, , = T
’ x, ifu>—I
Ehlers (ATVA 2017). Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks.
Singh et al (POPL 2019). An /—\bstrct Domain for Certifying Neural Networks. BQEJTER gLIVERPOOL imperial Colege —




Linear Relaxation of S-shape Activation Functions 98

l u l U l u
14 11 14
0.5 + 0.5 0.5 1
0 1 I } } > 0 i I I > 0 } } I
—2 0 2 4 -2 0 2 4 -2 0 2 4

Zhang et al (Neurips 2018). Efficient Neural Network Robustness Certification with General Activation Functions.
Henriksen and Lomuscio (ECAI 2020). Efficient Neural Network Verification via Adaptive Refinement and

Adversarial Search.
Wu and Zhang (AAAI 2021). Tightening Robustness Verification of Convolutional Neural Networks with

Fine-Grained Linear Approximation.

ANUNIVERSITY OF I ial Coll —
%TER @ LIVERPOOL | ghean 0'¢9¢




Symbolic Interval Propagation 99

Singh et al (POPL 2019). An Abstract Domain for Certifying Neural Networks.
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Symbolic Interval Propagation 99

—

W'a® 4 b!

Singh et al (POPL 2019). An Abstract Domain for Certifying Neural Networks.
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Symbolic Interval Propagation 99

—

éIIO

leqy , ueq,
V

Singh et al (POPL 2019). An Abstract Domain for Certifying Neural Networks.
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Symbolic Interval Propagation 99

—

Wizl 4+ bt Torur 20

Singh et al (POPL 2019). An Abstract Domain for Certifying Neural Networks.
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Symbolic Interval Propagation 99

@ Q)
x? x>

Singh et al (POPL 2019). An Abstract Domain for Certifying Neural Networks.
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Symbolic Interval Propagation 99

@ Q)
x? x>

Singh et al (POPL 2019). An Abstract Domain for Certifying Neural Networks.
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Symbolic Interval Propagation 99

@ Q)
x? x>

Singh et al (POPL 2019). An Abstract Domain for Certifying Neural Networks.
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Symbolic Interval Propagation 99

—

Wial + !

\
>/
-

©

/
S
p
©

1 1 2 2

z xr z xr xr
W

w

Singh et al (POPL 2019). An Abstract Domain for Certifying Neural Networks.
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Symbolic Interval Propagation 99

Wizl 4+ bt Torur 20 W2zl 4+ b2 Ti2 2 22

®

C]

w

Singh et al (POPL 2019). An Abstract Domain for Certifying Neural Networks.
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Symbolic Interval Propagation 99

Whad + b Tp1 gt 2t Wizl + v? T2 2,22 wiz? + b

Singh et al (POPL 2019). An Abstract Domain for Certifying Neural Networks.
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Symbolic Interval Propagation 99

Wlal +b! Tyt it 20 W2zl + b2 Ti2 g2 22 Wiz + b3

Singh et al (POPL 2019). An Abstract Domain for Certifying Neural Networks.
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Symbolic Interval Propagation 99

&
0

T

Substituting the equations backwards until the input layer
» current equation Mz + o, local equations I(y) and u(y) for
» new lower bound equation Mt -I(y) + M~ -u(y) + o
» new upper bound equation Mt -u(y) + M~ -i(y) + o

Singh et al (POPL 2019). An Abstract Domain for Certifying Neural Networks.
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Symbolic Interval Propagation 99

—

Substituting the equations backwards until the input layer
» current equation Mz + o, local equations I(y) and u(y) for
» new lower bound equation Mt -I(y) + M~ -u(y) + o
» new upper bound equation Mt -u(y) + M~ -i(y) + o

Singh et al (POPL 2019). An Abstract Domain for Certifying Neural Networks.
Wang et al (NeurlPS 2018). Efficient Formal Safety Analysis of Neural Networks.

Weng et al (ICML 2018). Towards Fast Computation of Certified Robustness for ReLU Networks.
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Table of Contents 100
—

Robustness Verification

Constraint Solving Techniques
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Constraint solving approaches 101

—

1. Encode as a set of linear constraints

» the network
» the input property
» the negation of the output property

2. Check feasibility of the given set of constraints

» |f feasible = a counter-example can be extracted from the satisfying assignment
» Otherwise, it has been formally shown that the property is satisfied

Work for neural networks with piecewise linear activation functions.
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Satisfiability Modulo Theories approach 102
—

Satisfiability of Boolean formulas with special predicates:
» e.g., linear inequalities

» Simplex is a standard decision procedure for conjunctions of linear atoms.

Verification of Neural Networks:
1. Linear network constraints = linear inequalities
2. Non-linear ReLU = special ReLU constraint ReLU(2}, x})
3. The simplex calculus is extended to handle ReLU constraints: Reluplex

4. SMT-based techniques are used to find a satisfying assignment

Katz et al (CAV 2017). Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks.
Katz et al (CAV 2019). The Marabou Framework for Verification and Analysis of Deep Neural Networks.
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Mixed-Integer Linear Programming approach 103

—

Feasibility of a set of linear inequalities over real and integer-valued variables.

Verification of Neural Networks:

» Piecewise linear non-linearities can be directly encoded
using binary and integer variables.

» Off-the-shelf MILP solvers can be used to check feasibility of the encoding.
» modern MILP solvers are very powerful

Lomuscio and Maganti (Arxiv 2017). An approach to reachability analysis for feed-forward ReLU neural networks.
Cheng, Niihrenberg and Ruess (CAV 2017). Maximum resilience of artificial neural networks.

Fischetti and Jo (Constraints 2018). Deep neural networks and mixed integer linear optimization.

Tjeng, Xiao and Tedrake (ICLR 2019). Evaluating Robustness Of Neural Networks With Mixed Integer Programming.
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MILP Encoding of the Local Robustness Verification Problem 104
—

> Weighted sum
2 — Wigi—1 1 pi
> RelLU constraint =’ = ReLU(z’) when ll <0 <uj

Qﬂ

7 7 7
ch20 wj<u (5

@l > 2} xh < 2! fl7 (1-0%)

0= a: = 0, inactive
: 1=

7
7
j w —z , active

(}ﬂ

» Input property ||z° — || <7
ZE]‘—TSCL’gSij—‘rT‘

> (Negation of) output property argmax; ¥ = argmax; N(&); = ¢
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Tjeng, Xiao and Tedrake (ICLR 2019). Evaluating Robustness Of Neural Networks With Mixed Intecer Procramming.
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Can We Leverage NN Structure to Speed Up Verification? 105
—

Branch-and-bound Procedure
1. Solve the linear relaxation of the program (integer variables can take real values).
2. If the solution satisfies all integer constraints — terminate.
3. Otherwise, branch on an integer variable with fractional value.

4. Repeat for each sub-problem.

&3 03
< >1 <0

""" < Yo & s
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Dependency Relation between ReLLU Nodes 106

Unstable nodes nf, and n/ are in a dependency relation,
if fixing nfl in some stable state, fixes nZ in a stable state as well, and the other way around.

Botoeva et al (AAAI 2020). Efficient Verification of ReLU-based Neural Networks via Dependency Analysis.
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Dependency Relation between ReLLU Nodes 106

Unstable nodes nf, and n/ are in a dependency relation,
if fixing nfl in some stable state, fixes ni in a stable state as well, and the other way around.

1

0
T2 )\ ED)

Botoeva et al (AAAI 2020). Efficient Verification of ReLU-based Neural Networks via Dependency Analysis.
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Dependency Relation between ReLLU Nodes 106

Unstable nodes nf, and n/ are in a dependency relation,
if fixing nfl in some stable state, fixes ni in a stable state as well, and the other way around.

1

0
T2 )\ ED)

Botoeva et al (AAAI 2020). Efficient Verification of ReLU-based Neural Networks via Dependency Analysis.
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Dependency Relation between ReLLU Nodes 106

Unstable nodes n, and nJ are in a dependency relation,
if fixing nfl in some stable state, fixes n,J; in a stable state as well, and the other way around.

0 1
x5 ) z2

Dependency between n} and nd: (61 =1) — (65 = 1).

Botoeva et al (AAAI 2020). Efficient Verification of ReLU-based Neural Networks via Dependency Analysis.

ANVRIVERSITY 0F I ial Coll —
EXETER B LiviRpooL Imeeal Coleoe




Dependency Relation between ReLLU Nodes 106

Unstable nodes n, and nJ are in a dependency relation,
if fixing nfl in some stable state, fixes n,Z in a stable state as well, and the other way around.

0 1
x5 ) z2

Dependency between ni and ni: (61 = 0) v (63 =1). As MILP constraint: | (1 —61) + 65 > 1],

Botoeva et al (AAAI 2020). Efficient Verification of ReLU-based Neural Networks via Dependency Analysis.
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Dependency Relation between ReLLU Nodes 106

Unstable nodes n, and nJ are in a dependency relation,
if fixing nfl in some stable state, fixes n,Z in a stable state as well, and the other way around.

0 1 .
T2 )\ ED) Reduction of the search space.

1 5%

1 03
2z = / \: 1 :jﬁ \: 1
Dependency between ni and ni: (61 = 0) v (63 =1). As MILP constraint: | (1 —61) + 65 > 1],

Botoeva et al (AAAI 2020). Efficient Verification of ReLU-based Neural Networks via Dependency Analysis.
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Intra- and Inter-layer dependencies 107

—

Intra-layer dependencies

zZ2 Z%

(6] =0) = (0, =0) Ot=1)— (=1

BQEJTER ngVER[‘OOL |‘TPH8[iHB|C0]|ege




Intra- and Inter-layer dependencies 107

—

Intra-layer dependencies

23 23 2

21 zi =1

(Of =1) = (0;=0) (6 =0) = (5 =1) (6] =0) = (0, =0) Ot=1)— (=1

Inter-layer dependencies
[0,2]

1
@) 1.2
—1
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Intra- and Inter-layer dependencies 107

2
(61 =0)—

Intra-layer dependencies
(l=1)—= (84 =0) (1=0)—(84=1) @Gl=1-=(@t=1

Inter-layer dependencies

S
P @1 =0 @t=1)

— = 0,2)
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Intra- and Inter-layer dependencies 107

2
(61 =0)—

Intra-layer dependencies
(l=1)—= (84 =0) (1=0)—(84=1) @Gl=1-=(@t=1

Inter-layer dependencies
[0,2][0, 0]

(61 = 0) = (67 = 0)
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Inserting Dependency Cuts 108

1. Stop the branch-and-bound procedure at runtime.

7 \ / Y |
2. Compute the dependencies given the partial assignment to 5;

eg., (62=0)V (63 =1)when §{ =0and 6} =1

3. Add the dependencies as MILP constraints to the MILP formulation.

(1-0)+6+ si+(1-6) >1
N————

0 under the current branch
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Table of Contents 109
—

Robustness Verification

Abstraction and Refinement Techniques
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Abstraction and Refinement approaches 110

—

Verify using a fast incomplete method
If property holds — return success
If a counter-example found — return failure

If unknown — refine the verification problem

ARl

Repeat for each sub-problem

Refinement for over-approximation based abstraction:
» Input domain splitting
» RelLU node splitting
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Input Domain Splitting 111

1. Bisect the input interval along one of the dimensions
» smaller input intervals = smaller over-approximation error.

Heuristics for choosing the dimension to split.

Works well for low dimensional inputs. | i

Can be used with arbitrary activation functions to produce better output bounds.

Gl

Can be used in conjunction with constraint solving approaches.

Wang et al (NeurlPS 2018). Formal Security Analysis of Neural Networks using Symbolic Intervals.
Rubies-Royo et al (Arxiv 2019). Fast Neural Network Verification via Shadow Prices.

Katz et al (CAV 2019). The Marabou Framework for Verification and Analysis of Deep Neural Networks.
Botoeva et al (AAAI 2020). Efficient Verification of ReLU-based Neural Networks via Dependency Analysis.
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ReLLU Node Splitting 112
—

1. Stabilise an unstable ReLU node

» no need for linear relaxation = smaller over-approximation error.
2. Heuristics for choosing the node to split.
3. Works well for high dimensional inputs.

4. Might require using an LP solver.

Wang et al (NeurlPS 2018). Efficient Formal Safety Analysis of Neural Networks.

Henriksen and Lomuscio (ECAI 2020). Efficient Neural Network Verification via Adaptive Refinement and
Adversarial Search.

Bak (VNN 2020). Execution-Guided Overapproximation (EGO) for Improving Scalability of Neural Network
Verification.

Henriksen and Lomuscio (IJCAI 2021). DEEPSPLIT: An Efficient Splitting Method for Neural Network
Verification via Indirect Effect Analysis.

Kouvaros and Lomuscio (IJCAI 2021). Towards Scalable Complete Verification of ReLU Neural Networks via
Dependency-based Branching.
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Other Abstraction Methods 113
—

> Ashok et al (ATVA 2020). DeepAbstract: Neural Network Abstraction for Accelerating
Verification.

» Elboher, Gottschlich and Katz (CAV 2020). An Abstraction-Based Framework for Neural
Network Verification.

» Prabhakar and Rahimi Afzal (NeurlPS 2019). Abstraction based Output Range Analysis for
Neural Networks.

» Sotoudeh and Thakur (Arxiv 2020). Abstract Neural Networks.
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Concluding Remarks 114

—

» Scalability remains the main concern

» Holistic approach to training and verification
» models that are easier to verify

» Other kind of verification properties

ANVRIVERSITY OF I ial Coll —
EXETER B LiviRpOOL Imeeal Coteoe




Table of Contents 115
—

Verification in Practice

BQEJTER ngVER[‘OOL |‘TPH8[iHB|C0]|ege




Verification in Practice




What are the practical needs of verification? 117

—

» More properties to be verified.
» robustness — local property for input perturbation
» generalisation — global property for unseen data
» security properties such as backdoor

» Different ways of expressing whether or not a model is dependable.

» confirm whether or not a property holds
» finding counterexamples

P statistical evaluation

» lower/upper bounds of a certain quantity

EXETER I ial Coll
EXETER @ [IvERpoOL (el Cotege—



What are the practical needs of verification? 118

—

» Scalable to work with real-world neural networks

» different types of layers and activation functions
» large network (depth, width, etc)

» Concerns all inputs that may appear in operational time

» Reliability, which describes the ability of a system or component to function under
stated conditions for a specified period of time.

EXETER I ial Coll
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Approaches towards making verification practical 119

To be included in this tutorial:

» For local properties such as robustness

» Global optimisation based methods — converging bounds
» Sampling based methods — statistical bounds
» Testing methods — use metrics to decide if the tests are sufficient

» For reliability

» Assessment method based on the production of (global) generalisation and (local)
robustness
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Verification in Practice

—Converging Bounds Methods




General idea of converging bounds method 121

Iterations of MCTS
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DeepGo — A Verification Method [Ruan et al., 2018] 122
—

[Huang et al., 2017] (CAV2017) Safety verification of deep neural networks.

[Wicker et al., 2018] (TACAS2018) Feature-guided black-box safety testing of deep
neural networks

[Ruan et al., 2018] (IJCAI2018) Reachability Analysis of Deep Neural Networks with
Provable Guarantees.

[Ruan et al., 2019] (IJCAI2019) Global Robustness Evaluation of Deep Neural Networks
with Provable Guarantees for the Hamming Distance,

[Wu et al., 2020] (Theoretical Computer Science, 2020) A game-based approximate
verification of deep neural networks with provable guarantees.
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Reachability Analysis — Lipschitz Networks 123

The following layers are Lipschitz continuous:
» convolutional with ReLU activation functions,
fully connected layers with ReLU activation functions,
max pooling
contrast-normalization

softmax (proved in this paper)

vVvYyyvy

sigmoid (proved in this paper)
» Hyperbolic tangent (proved in this paper)

Cover all layers used in e.g., image classification networks.
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Reachability Analysis — Generic Definition 124
—

Let 0:[0,1)™ — R be a Lipschitz continuous function statistically evaluating the
outputs of the network.

Connect the network f with function o, i.e., o(f(x))

hidden layer 1 hidden layer 2 hidden layer 3
input layer

function o
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Reachability Analysis — Generic Definition 125

—

Let X' C [0,1]™ be an input subspace and f : R™ — R™ a network. The reachability
of f over the function o under an error tolerance ¢ > 0 is a set R(o, X', €) = [l,u] such

that
[ > inf o(f(z')) —eand u < sup o(f(z')) +e. (4)
a'eX’ 2/eX!
We write u(o, X', €) = u and l(0, X', €) = [ for the upper and lower bound,
respectively.
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Reachability Analysis — Generic Definition 126
—

The instantiation of the o function will enable us to express several problems with a
single formalism.

P output range analysis
» safety/robustness verification

» robustness comparison between networks and input subregions
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Reachability Analysis — Instantiations 127

—

» (Safety Definition) A network f is safe with respect to an input = and an input
subspace X’ C [0,1]™ with z € X" if

Va' € X' : argmaxcj(2’) = arg max ¢; () (5)
j j

» (Instantiation for safety) A network f is safe with respect to = and X’ s.t. z € X’
if and only if

u(®, X' e) <0
where j = argmax; ¢;(x),

D(c1, e Cm) = MaXie 1. my(Ii(e1, .oy ) — ILji(c1, .o, em)). The error bound of
the safety decision problem by this reduction is 2e.
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computation of the minimum value 128

—

Let w = o- f. The computation of the minimum value is reduced to solving the
following optimization problem with guaranteed convergence to the global minimum.

H}Tin w(z), s.t. x € [a,b]" (6)

The maximization problem can be transferred into a minimization problem.
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Algorithmic Idea 129
—

Design another continuous function h(z,y), which serves as a lower bound of the
original function w(x). Specifically, we need

hz,y) < w(z), Yo,y € [a,0]", h(z,z) = w(z) (7)
Furthermore, for i > 0, we let V; = {yo,y1,...,¥i} be a finite set containing i + 1
points from the input space [a,b]", and let ); € ) when k > i, then we can define a

function H(x;);) = maxyecy, h(z,y) which satisfies the following relation:

H(z;Yi) < H(x; Vi) < w(z) (8)
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Algorithmic Idea 130
—

We use [; = inf ¢, 4» H (7;);) to denote the minimum value of H (x;);) for
x € [a,b]". Then we have

lp<h <..<liz1<l; < inf ’U)(.%')
x€la,b]"

Similarly, we need a sequence of upper bounds u; to have

lp<..<l;< inf <y <. <
0 - $€1£7b]n w(z) <u 4o (9)

By Expression (9), we can have the following:

lim /; = min w(x) and lim (u; — ;) =0 (10)

1—00 xE[a,b]n 1—00
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One-dimensional Optimisation

—

Let h(z,

y) =w(y) —
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Experimental Results

—

132

NN | Layer |Neutron Time by Time by Our
ID No. No. |SHERLOCK | Reluplex |method
N-0 1 100 1.9s Im 55s 0.4s
N-1 1 200 2.4s 13m 58s 1.0s
N-2 1 500 17.8s Timeout 6.8s
N-3 1 500 7.65 Timeout 5.3s
N-4 1 1000 7m 57.8s Timeout 1.8s
N-5 6 250 9m 48.4s Timeout 15.1s

Figure: Comparison with SHERLOCK and Reluplex

Computational complexity is NP-complete over the input dimension, instead of number

of neurons.
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Verification in Practice

—Sampling-based Methods




CLEVER [Weng et al., 2018] 134

» A lower bound of L, minimum adversarial distortion 3,

» Extreme Value Theory ensures that the maximum value of random variables can
only follow one of the three extreme value distributions.

[Weng et al., 2018] (ICLR2018) Evaluating The Robustness Of Neural Networks: An Extreme
Value Theory Approach
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Statistical Assessment [Webb et al., 2019] 135
—

» a naive Monte Carlo sampling does not work well for high-dimensional problems.

P an adaptation of multi-level splitting, a Monte Carlo approach for estimating the
probability of rare events.

[Webb et al., 2019] (ICLR2019) A Statistical Approach To Assessing Neural Network
Robustness
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Verification in Practice

—Software Testing Methods




Software Testing Methods 137
—

» Well established in many industrial standard for software used in safety critical
systems, such as 1S026262 for automotive systems and DO 178B/C for avionic
systems.

» Coverage Metrics

» structural coverage
» scenario coverage

» Test Case Generation Methods

» fuzzing
» symbolic execution, etc

» to determine if the generated test cases include bugs.
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Software Testing Methods for Neural Networks 138
—

» Industrial standards need to be upgraded

» A few Coverage Metrics [Pei et al., 2017, Sun et al., 2019]
» A few Test Case Generation Methods [Sun et al., 2018]

P> Use a set of generated test cases to either finding bugs or evaluating the
performance of a neural network

[Pei et al., 2017] (SOSP2017) DeepXplore: Automated Whitebox Testing of Deep Learning
Systems.
[Sun et al., 2019] (EMSOFT2019) Structural Test Coverage Criteria for Deep Neural Networks.

[Sun et al., 2018] (ASE2018) Concolic Testing for Deep Neural Networks.
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Coverage Metrics 139

—

» Neuron Coverage [Pei et al., 2017]: to make sure that all neurons have been
activated in at least one of the test cases

» boundary coverage : to make sure the boundary values of each neuron is reached.

» MC/DC coverage [Sun et al., 2019]: to make sure that every neuron in a layer
can independently activate the neurons in the next layer.
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MC‘DC coverage [Sun et al., 2019] — General Idea 140

The core idea of our criteria is to ensure that not only the presence of a feature needs
to be tested but also the effects of less complex features on a more complex feature
must be tested.

V1.1 ——

)

— V4.1

V1,2 — — V4.2

For example, check the impact of n2 1,122,123 on n3 1.

UNIVERSITY OF uN ITY ! ial Coll —
EXETER @ LVERPOGL [mheil Coleos




MC‘DC for DNNs — Neuron Pair and Sign Change 141

(Sign Change of a neuron) Given a neuron ny; and two test cases x; and x2, we say
that the sign change of ny; is exploited by z1 and x4, denoted as sc(ny, x1, x2), if

sign(ve,[z1]) # sign(vg[z2]).

I

sc(ns,1, T1,T2) = sign(vs,[z1]) # sign(vs 1[z2])
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MC‘DC for DNNs — Sign-Sign Cover, or SS Cover 142

A neuron pair (ny;,ng41,5) are two neurons in adjacent layers k and k + 1 such that
1<k<K-1,1<i<sg, and1 <75 < spyq.

A neuron pair av = (1, nk41,5) is SS-covered by two test cases x1, x2, denoted as
SS (o, 1, x2), if the following conditions are satisfied by the network instances N[x]

and N[zs]:

» sc(ngq,z1,x2);

» —sc(ng,,x1,x2) for all selnz1,21,2) .—'. se(ns,1,71,72)
ng| € Py \ {Z},
> SC(TL]H_L]', X, x2), —8c(na g, 71, 23)

—8¢(na,3, T1, 2}
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Research Dealing with DL Vulnerability 143
—

Then, what is the state-of-the-art on DNN Verification?
» Robustness

What is the actual need for certification?

» Reliability, e.g., the probability of no failure at all in the next prediction.
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Verification in Practice

—Reliability Assessment




Reliability 145
—

» Reliability is required by industrial standards

» consider e.g., the probability of no failure at all for the next 10* input
> safety integrity levels (SIL1 - SIL4), as in IEC 61508 standard for “Functional Safety
of Electrical/Electronic/ Programmable Electronic Safety-related Systems”

» From Robustness to Reliability? [Zhao et al., 2020]

» We do not know what the next input will be.
» Generalisability!

[Zhao et al., 2020] (SafeCOMP2020) A Safety Framework for Critical Systems Utilising Deep
Neural Networks
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What is generalisation failure? 146

—

How about these unseen datapoints which are far away from known data?

\

Note: far away from known data # far away from boundary
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What do we already have?
—

generalisation

147

robustness - | A
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Reliability 148
—

What is reliability in the context of deep learning?

Reliability = Generalisation x Robustness

i.e., we have the following definition for reliability [Zhao et al., 2021]

A= Z I{x causes a failure} (ﬂU)Op(x) (11)
z€D

where Op(x) captures the uncertainty of “which one would be the next input”.

[Zhao et al., 2021] (AlSafety2021) Assessing the Reliability of Deep Learning Classifiers
Through Robustness Evaluation and Operational Profiles
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How to evaluate reliability? 149

—

» This requires to verify

» Op(x): Probability Density Estimation, and

» [(x): the robustness of the possible inputs, which can be done with DNN verification
» based on an assumption that different inputs’ local robustness are independent.

» i.e., we need to explore a partition of the input space, and use Op(x) to weight
the verification results of cells
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—

» Binning, to partition the input space as cells
> r-separation [Yang et al., 2020]: a data distribution over | ;. X" is r-separable if
foralli,j € C

min  dist(z,x’) > 2r
TEX 3 EX

» use r as the radius of the cells
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Table 1: The RAM details and results. For image datasets, the 7, € and # are associated with latent spaces. Time is in seconds per cell.

[ train/test error | r-separation [ cellradiuse [ #ofcells [  ACU E[)\] VA | Ubgrsy | time

The run. exp. | 0.0005/0.0180 0.004013 0.004 250 x 250 | 0.002982 | 0.004891 | 0.000004 | 0.004899 | 0.04
Synth. DS-1 | 0.0037/0.0800 0.004392 0.004 250 x 250 | 0.008025 | 0.008290 | 0.000014 | 0.008319 | 0.03
Synth. DS-2 | 0.0004/0.0079 0.002001 0.002 500 x 500 | 0.004739 | 0.005249 | 0.000002 | 0.005252 | 0.04
MNIST 0.0051/0.0235 0.1003 0.100 top-170000 | 0.106615 | 0.036517 / / 0.43
CIFARI10 0.0199/0.0853 0.1947 0.125 top-23000 | 0.238138 | 0.234419 / / 6.74

Figure: Part of the results for Siemens’ Artificial Intelligence Dependability Assessment
challenge.

» How to make the estimation more precise?

» local robustness computation cannot be speed up.
» So, deal with networks with better generalisability! How?
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Considering an important open question — Is there any structural information that
can be utilised to determine the generalisation ability of deep neural
networks? [Jin et al., 2020]

[Jin et al., 2020] (NeurlPS2020) How does Weight Correlation Affect the Generalisation
Ability of Deep Neural Networks.
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(McAllester, 1999) considers a generalization bound on the parameters

Posteriori distribution Priori distribution P
Q on parameters © on parameters ©

KL(Q||P) + log ™

Eo~olLD(fo)] < Eo~g|Ls( [ by — 2 s
o~Q[Lp(fo)] < Eo~qlLs(fo)] \/ 5 1)
—
Expected loss on Expected loss on Number of
input space D samples S from D samples

KL divergence plays a key role in the generalization bound

» a small KL term will help tighten the bound

» a larger KL term will loose the bound
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P Relax the i.i.d. assumption on the posterior distribution, consider weight
correlation, in order to achieve a tighter lower bound and a better prediction
ability.

» Found that there are structural components that affect the generalisability of
neural networks
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® -
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Figure: (FCN) WC of any two neurons is the cosine similarity of the associated weight vectors.
(CNN) WC of any two filters is the cosine similarity of the reshaped filter matrices.

[Jin et al., 2020] (NeurlPS2020) How does Weight Correlation Affect the Generalisation
Ability of Deep Neural Networks.
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» Enable the design of new measure (in the next slide) which can serve as a
strong/direct indicator of the generalisation. Roughly, lower weight correlation
suggests a better PAC Bayes bound, i.e., smaller generalisation gap and better

generalisation ability.
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Table 1: Complexity Measures (Measured Quantities)

157

Generalisation Error (GE)
Product of Frobenius Norms (PFN)

Product of Spectral Norms (PSN)
Number of Parameters (NoP)
Sum of Spectral Norms (SoSP)

Weight Correlation (WC)

PAC Bayes (PB)
PAC Bayes & Correlation (PBC)

Lo (for) = Ls(for)
T 107 [l
IL 167112

Total number of parameters in the network

Total number of parameters x >_(|6F — 6/ |2

7 2 plw)

Xclo?
Z/( ‘Hlf‘

”flﬂz‘/ ;
07 |I7/207 + 8!

20;

Table 2: Complexity measures for CIFAR-10

Network PFN PSN NoP  SoSpP PB PBC wC GE
FCN1 8.1e7 3.7¢7 I.le4 | 1.14e5][ 0.297 | 2.056
FCN2 3.3¢7 8.8e3 | 1.24e5|| 0.296 | 2.354

VGG11 8. 3.4le4|| 0.273 | 0.929
VGG16 5.lels 3.73¢4|| 0.275 | 0.553
VGGI19 I.1el9 4.26e4 || 0.274 | 0.678

ResNet18 2.5e22 1.34e5|| 0.732 | 2.681

ResNet34 9.9¢34 1.30e5|| 0.733 | 2.552

ResNet50 1.4e76  7.5e46 1.62e7|| 0.278 | 2.807

DenseNet121 5.9e176  1.4el51 1.04¢9|| 0.357 | 1.437
Concordant Pairs 21 21 29 24 -
Discordant Pairs 15 15 7 12 -

Kendall’s 7 0.16 0.16 0.61 0.33 -

New measure
(wr))
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» Enable the design of new measure (in the next slide) which can serve as a strong
indicator of the generalisation. Roughly, lower weight correlation suggests a better
PAC Bayes bound, i.e., smaller generalisation gap and better generalisation ability.

» The training process by monitoring and adapting this measure can lead to models
with better generalisation.
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» Enable the design of new measure (in the next slide) which can serve as a strong
indicator of the generalisation. Roughly, lower weight correlation suggests a better
PAC Bayes bound, i.e., smaller generalisation gap and better generalisation ability.

» The training process by monitoring and adapting this measure can lead to models
with better generalisation.

» Now close the loop: use structural information to improve the generalisation of
neural network, on which reliability estimation is more accurate.
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Relationship between Attacks/Defences/Verification 162
—

> Falsification through Attacks: identify risks
P Rectification through Defence: reduce risks

» Verification: prove the absence of risks
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with Falsification/Rectification /Verification in mind,

»

‘ Falsification }M» Rectification

A

Error not found Failed with error found

vy @@

‘ Verification } » deployment
success
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—

v

A proper metric that is of high fidelity to human perception would be key for high-quality attacks

> Attacks essentially prove the non-robustness of the model, so combining attacks (or falsification)
with verification could provide a more balanced and efficient way for certified robustness
evaluation

» Developing black-box attacks that the adversary can only access the hard label with limited
queries

» Exploring empirical and theoretical connections between adversarial robustness and interpretability

» Exploring adversarial attacks that can resemble a wide range of real-world adversarial
instances/scenarios

» Attacking solutions that are independent of a certain distance metric (or workable on multiple
distance metrics)

» The empirical and theoretical relations between universal attacks and global robustness (or
robustness of model structure that is independent of concrete inputs)
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» Theoretical understanding of adversarial training

» What is the trade-off between robustness and accuracy?
» How to optimally integrate both local and global information?
» How does robustness interact with generalisation?

» Adversarial training for semi-supervised or unsupervised learning

» Adversarial training in the distributed learning scenarios, e.g., federated learning
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Verification for reliability (i.e., not only robustness),

Verification of online learning,

| 2

>

» Improved scalability through e.g., abstraction,

» Training for verification: models that are easier to verify,
>

etc.
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